Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Effects Of Varied Oxygen Levels, Laser Powers, And Scanning Speeds On Manufactured Components By Laser-Based Powder Bed Fusion, Amelia Mcnamee Apr 2022

Effects Of Varied Oxygen Levels, Laser Powers, And Scanning Speeds On Manufactured Components By Laser-Based Powder Bed Fusion, Amelia Mcnamee

Honors College Theses

This project addresses the effects of oxygen concentration, laser power, and scanning speed on the melt pool geometry of laser-based powder bed fusion (L-PBF) additively manufactured components. A parametric analysis using the substrate alone was conducted to determine a range of desirable laser powers and scanning speeds. The parameter with the more significant effect will be decided upon based on the depth-to-width ratios (D/W) of the resultant laser weld bead. A range of oxygen levels and scan speeds was selected for the next phase. These samples were then be analyzed for depth-to-width ratios. It was expected that higher oxygen concentrations …


Structural Health Monitoring Of Bioprinted Materials, Kathryn H. Mcintosh Apr 2022

Structural Health Monitoring Of Bioprinted Materials, Kathryn H. Mcintosh

Honors College Theses

Bioprinting is a new method that utilizes additive manufacturing to construct organs, tissues, and other biostructures. This method presents endless possibilities - less reliance on organ donors (according to the Health Resources and Services Administration, 17 people die each day waiting for an organ transplant in the U.S.), more transplant opportunities, and the ability to save significantly more lives. While bioprinting has opened a new frontier in the biomedical field, there may be some research issues that need to be addressed. For example, numerous researchers have focused on creating novel approaches to print complicated geometries. However, the structural integrity or …


Determining Cause Of Failure For Load Cells Supporting Vertical Pressure Vessels Subject To Wind Loading, Seth Nowak Jan 2022

Determining Cause Of Failure For Load Cells Supporting Vertical Pressure Vessels Subject To Wind Loading, Seth Nowak

Electronic Theses and Dissertations

Wind loads cannot be avoided during a natural disaster such as a hurricane and could affect the strength and stability of vertical pressure vessels during exposure. Vertical pressure vessels cater to large wind loads; therefore, it is imperative to study the effect of additional loading on the structures. In this study, three pressure vessels with volumes of 50 CuFt, 200 CuFt, and 1100 CuFt, supported by three equidistant load cells under their legs are individually analyzed to determine von mises stress to estimate yield failure criteria. Two load rating criteria, maximum load capacity and water-filled condition (critical condition) are utilized …


Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii Jan 2022

Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii

Electronic Theses and Dissertations

A study was conducted to investigate the low temperature combustion (LTC) regions of aerospace F24 and ULSD in the static setting of a CVCC and the dynamic setting of a CRDI research engine. This research is conducted to reduce in-cylinder emissions by understanding and implementing a technique to achieve an extended LTC. Emissions data for this study were collected during the operation of the CRDI research engine with a MKS 2030 FTIR and an AVL Microsoot 483. The parameters researched within the static setting of the CVCC included the determinations of the cool flames and NTC regions within the LTHR …


Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv Jan 2022

Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv

Electronic Theses and Dissertations

According to the Hall-Petch equation, the refinement of grains in metals increases the yield strength of the material. Austenite grain size influences the fineness of microstructural constituents in the ferrous alloys. It is well studied that cerium and titanium refine the austenite in steels and some gray irons, but no studies have been done to systematically explore the effects of cerium and titanium additions on austenite in ductile iron. This study sought to determine the effects of selected levels of these elements on the grain size within ductile iron. A hypoeutectic iron was chosen for testing as the proeutectic phase …