Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Ternary Flow Simulation Based On The Conservative Phase Field Lattice Boltzmann Method, Chunheng Zhao Jan 2022

Ternary Flow Simulation Based On The Conservative Phase Field Lattice Boltzmann Method, Chunheng Zhao

Dissertations and Theses

In this thesis, we numerically investigated multi-phase fluid dynamics (2 and 3-phase flow) by solving the Navier-Stokes equations coupled with the conservative phase field (CPF) equations using the Lattice Boltzmann method (LBM). To effectively simulate the large-scale multi-phase physics, we developed an open-source software, IMEXLBM, which can be easily parallelized on both CPUs and GPUs without significant modifications to the code. We first validated various parts of this software and then used this method to study the interaction of rising bubbles with a static oil droplet as well as the engulfment of the water droplet on solids coated with a …


Understanding The Relationship Between Urban Areas And The Boundary Layer Using Remote Sensing Methods, Gabriel A. Rios Jan 2022

Understanding The Relationship Between Urban Areas And The Boundary Layer Using Remote Sensing Methods, Gabriel A. Rios

Dissertations and Theses

The atmospheric boundary layer is crucial to the exchange in energy between the Earth's surface and the atmosphere. Within this layer, the majority of human activities are carried out, which makes understanding the boundary layer especially important for many of our interests. A key component of this energy exchange is found at the surface, was surface properties are the interface through which momentum, heat, moisture, and other fluxes are transferred between media. Not only does the surface act as an interface, but as an actor that influences the exchange efficiency and rates. This concept is the crux of atmospheric boundary …


On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez Jan 2021

On The Improvements Of Boundary-Layer Representation For High Resolution Weather Forecasting In Costal-Urban Environments, David Melecio-Vazquez

Dissertations and Theses

As large urban centers around the world become more densely populated, the global conversion from natural to man-made land surfaces will only increase. These land-use changes affect the urban surface energy budget which in turn changes the structure of the planetary boundary layer (PBL) above. With current high-performance computing systems, meteorological and built environment information can be better utilized to quantify the anthropogenic effects of these modifications. Although these systems have improved forecasting near-surface weather conditions, a comprehensive approach to represent urban impacts on the PBL is still limited. Improved PBL representation can lead to better weather and climate forecasts, …


The Diffuse Bounce Back Lattice Boltzmann Method And Its Applications On The Study Of Fluid-Particle Interactions, Geng Liu Jan 2021

The Diffuse Bounce Back Lattice Boltzmann Method And Its Applications On The Study Of Fluid-Particle Interactions, Geng Liu

Dissertations and Theses

Fluid-structure interaction is very broadly seen and widely used in many industrial, engineering and environmental processes. The lattice Boltzmann method has been preferred for simulating particulate flows due to its advantages of easy implementation, micro- and mesoscopic physical insights and parallel algorithm. Both sharp and diffuse boundary treatments are studied to recover curved and moving boundaries on structured orthogonal grids for the lattice Boltzmann method. These methods can describe curved boundaries more accurately and more smoothly than the naive staircase approximation. However, to improve the order of velocity accuracy and to reduce the fluctuation of force, either interpolation or additional …


Adapting To Extreme Heat: Social, Atmospheric, And Infrastructure Impacts Of Air Conditioning In Megacities - The Case Of New York City, Harold Gamarro Jan 2020

Adapting To Extreme Heat: Social, Atmospheric, And Infrastructure Impacts Of Air Conditioning In Megacities - The Case Of New York City, Harold Gamarro

Dissertations and Theses

Extreme heat events are becoming more frequent and intense in most large cities. Built-up surfaces also limit cooling mechanisms, leading to warmer conditions in cities, a phenomenon called the Urban Heat Island (UHI). This presents major challenges to reduce adverse health effects of hot weather, particularly in vulnerable populations like the elderly and low-income communities. Here we explore the overall impacts of increasing air conditioning (AC) system adoption in residences as an adaptive measure to reduce human health risks under heat waves, with New York City (NYC) as a case study. This study uses AC adoption data from the 2017 …


Toward Closing The Urban Surface Energy Balance Using Satellite Remote Sensing, Joshua Hrisko Jan 2020

Toward Closing The Urban Surface Energy Balance Using Satellite Remote Sensing, Joshua Hrisko

Dissertations and Theses

The energy exchanges at the Earth’s surface are responsible for many of the processes that govern weather, climate, human health, and energy use. This exchange, commonly known as the surface energy balance (SEB), determines the near-surface thermodynamic state by partitioning the available energy into surface fluxes. The net all-wave radiation is often the primary energy source, while the heat storage and sensible and latent heat fluxes account for the majority of energy distributed elsewhere. While the SEB of various natural environments(trees, crops, soils) has been well-observed and modeled, the urban surface energy balance remains elusive. This is due to the …


Smart Prismatic Louver Technology For Enhanced Daylighting And Management Of Thermal Loads In Green Buildings, Michael Alva Jan 2018

Smart Prismatic Louver Technology For Enhanced Daylighting And Management Of Thermal Loads In Green Buildings, Michael Alva

Dissertations and Theses

Abstract

Two significant design strategies for mitigating building energy consumption are daylight redirection and solar energy harvesting. Good daylighting implementation enhances the amount of useful natural light within a space, thereby offsetting the need for electric lighting. Solar energy harvesting systems can mitigate energy costs from mechanical systems by managing incoming thermal loads or capturing solar energy that can be used to supplement thermal systems in the building. While there are many available façade-based technologies that can perform daylighting or solar thermal energy harvesting, there remains a limitation in available systems that can perform both simultaneously. The proposed Liquid Filled …