Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Mechanical Engineering

Oscillations Of Capillary Surfaces With Volume And Edge Effects, Dingqian Ding May 2024

Oscillations Of Capillary Surfaces With Volume And Edge Effects, Dingqian Ding

All Dissertations

Capillary surfaces are defined by an interface endowed with surface tension that is partially supported by a solid substrate and are susceptible to oscillations reflecting a balance between fluid inertia and the restorative force of surface tension. The wave dynamics strongly depend upon volume change within the domain and edge effects through the boundary conditions applied at the contact-line formed at the liquid-gas-solid interface, while the spatial wave structure conforms to the geometry of the capillary surface. This dissertation develops mathematical models to address these effects for several canonical capillary surfaces, which are organized into two parts that are focused …


Improving Sizing Resolution Of Particle Impactors In The Nanoparticle Range, Shivuday Kala Dec 2023

Improving Sizing Resolution Of Particle Impactors In The Nanoparticle Range, Shivuday Kala

All Dissertations

The application of particle size measurement extends across many fields: air quality measurement, pharmaceutical studies, paint and coating production, and nanoparticle formulation to name a few. Therefore, accurate measurement of nanoparticles is critical to aerosol science. While devices currently exist that can size and count nanoparticles such as electrical mobility spectrometers, dynamic light scattering devices, and small angle X-ray scattering devices, their high costs, complex operation, and lack of outdoor usability, restrict their use in practical applications. Among the devices that can size aerosols down to the nanoscale, cascade impactors stand out because of their robustness, relatively simple design, low …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Extensional Flows Of Polymer Solutions In Planar Microchannels, Mahmud Kamal Raihan Aug 2023

Extensional Flows Of Polymer Solutions In Planar Microchannels, Mahmud Kamal Raihan

All Dissertations

Non-Newtonian fluids such as polymer solutions often flow under microscale extensional conditions in many natural and engineering flow fields such as in microfluidic chips, porous rocks, biological membranes and filters, printheads in additive manufacturing, etc. The changing cross sectional areas of the internal flow passages therein exert additional extension on the flow along with the shearing. Numerous studies have been dedicated to understanding the extensional flows of polymer solutions over the years. However, most of these studies only focused on flexible polymers exhibiting elasticity in their macroscopic rheology, whereas rigid polymers that portray shear-thinning but often elude elasticity in the …


Investigation Of Fatigue Response With Analytical And Machine Learning Models And Hygroscopic Analysis Of Asymmetric Bistable Cfrp Composites, Shoab Ahmed Chowdhury Aug 2023

Investigation Of Fatigue Response With Analytical And Machine Learning Models And Hygroscopic Analysis Of Asymmetric Bistable Cfrp Composites, Shoab Ahmed Chowdhury

All Dissertations

Asymmetric bistable carbon fibre reinforced plastic (CFRP) composites enable a broad range of applications as they can sustain multiple stable configurations and have small snap-through load requirements. These unique features, coupled with their light strength-to-weight and stiffness-to-weight ratios, have made them preferred options for multifunctional systems. This study investigates the fatigue and hygroscopic response of 2-ply, [0/90] bistable CFRP laminates and proposes predictive modeling approaches for improved performance.

While previous studies widely researched and documented the fatigue of general composites in axial loading, fatigue analysis of asymmetric bistable composites in the out-of-plane snap-through direction is inadequate. This study performs fatigue …


Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel Aug 2023

Influence Of Swirl And Turbulence In The Particle Removal Using Fog In A Pipe Flow, Nisarg T. Patel

All Theses

Fog-and-tube scrubbers are employed to remove harmful ultrafine aerosols, such as Diesel particulate matter (DPM), from an airflow. The underlying principle of this removal process involves enlarging the aerosol particles by coagulating them with fog drops, which are subsequently eliminated through inertial impaction onto the tube wall. Previous research conducted by Tabor et al. (2021) demonstrated an increase in scavenging of ultrafine DPM particles, ranging from 11.5 nm to 154 nm, by as large as 45% over the no fog case. This finding is crucial in addressing the challenges associated with conventional filtration methods for capturing ultrafine particles.

The present …


Comparative Design Space For Bistable Composites: An Integrated Framework Of Optimization, Finite Element Analysis, And Experimental Testing, Jonathan Bolanos May 2023

Comparative Design Space For Bistable Composites: An Integrated Framework Of Optimization, Finite Element Analysis, And Experimental Testing, Jonathan Bolanos

All Theses

Bistable composites are a class of advanced materials that can actuate between two stable shapes, making them attractive for a wide range of engineering applications. However, designing these composites to achieve optimal performance remains a challenging task. To address the challenge, this research develops an integrated framework that combines a genetic algorithm optimization technique, finite element analysis in Abaqus, and experimental testing to explore the design comparative space for square bistable composites composed of DA 409 carbon fibers. This leads to the study of generating an optimization algorithm to account for the relationship between the chances of a successful maximum …


The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox May 2023

The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox

All Theses

Having a controlled environment to measure atmospheric turbulence is essential to understanding its effects on different laser beam characteristics. The Clemson Variable Turbulence Generator (VTG) has the capability to propagate a laser beam up to 100 m and be able to dial many turbulence settings up to a heat flux of 357 W/m2. A high-speed camera, power detector, and high-resolution temperature probes characterize the VTG with theoretical turbulence spectrums. The exponent associated with the Rayleigh-Bénard (RB) temperature structure constant equation is studied. Two different laser beam profiles are used throughout this work: Gaussian and Asymmetric Perfect Vortex (APV). …


Utilizing Systematic Design And Shape Memory Alloys To Enhance Actuation Of Modular High-Frequency Origami Robots, Jessica M. Den Haese Dec 2022

Utilizing Systematic Design And Shape Memory Alloys To Enhance Actuation Of Modular High-Frequency Origami Robots, Jessica M. Den Haese

All Theses

Shape memory alloys (SMAs) describe a group of smart metallic materials that can be deformed by external magnetic, thermal, or mechanical influence and then returned to a predetermined shape through the cycling of temperature or stress. They have several advantages, such as having excellent mechanical properties, being low cost, and being easily manufactured, while also providing a compact size, completely silent operation, high work density, and requiring less maintenance over time. SMAs can undergo sold-to-solid phase transformations, and it is because of these phase transformations that they can experience shape memory effect (SME); or the ability to recover from a …


An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster Dec 2022

An Application Of Optimized Bistable Laminates As A Low Velocity, Low Impact Mechanical Deterrent, Graham Lancaster

All Theses

This research considers the problem of using bistable laminates as a mechanical deterrent to the impending impact of a particle. The structure will be controlled through an algorithm that will utilize piezoelectric devices to activate them in unison with the bistable laminate to successfully deter. A novel experimental setup will be constructed to ensure that the bistable laminate stays fixed when acting as a mechanical deterrent. Piezoelectricity is the main driving force of the bistable laminate to morph and this study will use a Macro Fiber Composite (MFC) actuator that contains piezoelectric ceramic rods in a patch to transfer electrical …


Mechanics Modeling Of Non-Rigid Origami: From Qualitative To Quantitative Accuracy, Jiayue Tao Dec 2022

Mechanics Modeling Of Non-Rigid Origami: From Qualitative To Quantitative Accuracy, Jiayue Tao

All Dissertations

Origami, the ancient art of paper folding, has recently evolved into a design and fabrication framework for various engineering systems at vastly different scales: from large-scale deployable airframes to mesoscale biomedical devices to small-scale DNA machines. The increasingly diverse applications of origami require a better understanding of the fundamental mechanics and dynamics induced by folding. Therefore, formulating a high-fidelity simulation model for origami is crucial, especially when large amplitude deformation/rotation exists during folding.

The currently available origami simulation models can be categorized into three branches: rigid-facet models, bar-hinge models, and finite element models. The first branch of models assumes that …


Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri Dec 2022

Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri

All Dissertations

The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature.

This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while …


Tunable Filtration Of Particles During Dip-Coating, Connor Copeland Sep 2022

Tunable Filtration Of Particles During Dip-Coating, Connor Copeland

All Theses

When a solid substrate is withdrawn from a liquid bath a thin coating is deposited whose thickness is given by the Landau-Levich-Derjaguin (LLD) law. We perform an experimental study of dip coating of particle suspensions showing that particles of a given size can become entrained in the meniscus by the competition between viscous and surface tension forces. This is called capillary filtration and can be used as a tunable dynamic filter. For single particle suspensions, filtration can be in terms of either clumps or single particles, with the relevant entrainment points depending upon the rheology of the working fluid, either …


Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht Aug 2022

Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht

All Theses

Abstract

The understanding of microstructural damage mechanisms is the foundation of better understanding existing materials and future material development. There are significant challenges to measuring these damage mechanisms in-situ as continuous observation of the state of the microstructure is difficult or impossible for many experimental setups. This thesis presents a method for measuring grain boundary sliding (GBS) and local strain concentrations in-situ via a Heaviside function based algorithm. GBS is the shearing of two grains along their shared grain boundary and is a common damage mechanism in creep which presents as a discontinuity that can be measured with a Heaviside …


Mechanizing The Removal Of Soil Between Peach Trees Planted On Berms, Coleman Scroggs Aug 2022

Mechanizing The Removal Of Soil Between Peach Trees Planted On Berms, Coleman Scroggs

All Theses

Armillaria root rot (ARR), primarily caused by the soilborne fungus Desarmillaria tabescens, has become the number one cause for peach tree decline in the Southeastern United States. Research has shown that planting peach trees on shallow berms and excavating the soil around the root collar two years after planting lessens the effects of ARR. However, berms make orchard operations such as pruning, thinning, and harvesting more cumbersome and cause cultural concerns as channels of water at their base can lead to erosion and the slope of the berms leads to herbicide and fertilizer runoff. The objective of this research was …


Analysis Of The Self-Heating Effect On Unfilled Poly(Methyl Methacrylate) Due To Cyclic Behavior, Muhammed R. Kose May 2022

Analysis Of The Self-Heating Effect On Unfilled Poly(Methyl Methacrylate) Due To Cyclic Behavior, Muhammed R. Kose

All Theses

Poly(methyl methacrylate, (PMMA) has been implemented as part of the supporting structure in complete hip and knee replacements since the 1950s. Known as bone cement while in the body, PMMA is known to undergo compressive and tensile stresses that wear down the bio-compatible barrier and cause pieces to come loose inside the human body. These pieces are then attacked by the body’s own nervous system, leading to inflammation, and eventually necessitating replacement. It has been documented that under cyclic loading PMMA can reach temperatures that start to degrade its tensile capabilities. In this study the potential cause of self-heating was …


Examining The Different Snap-Through Characteristics Of Bistable Cfrp Composite Laminates, Vishrut Deshpande May 2022

Examining The Different Snap-Through Characteristics Of Bistable Cfrp Composite Laminates, Vishrut Deshpande

All Theses

Bistable carbon fiber composites, whose bistability arises from having asymmetric fiber layouts in different layers, have shown immense potential for use in shape morphing and adaptive structure applications. While many studies in this field focus on these composite laminates’ external shapes at the two stable states, their snap-through behavior of shifting from one stable shape to the other remains a critical aspect to be investigated in complete detail. Moreover, symmetric loading conditions have been extensively studied based on the classical lamination theory, but the asymmetric loading conditions received far less attention. Therefore, this study examines an asymmetric, localized point load …


Predictive Performance And Teaming Via The Mist-C Ocean Hierarchy Utilizing Personality And Skills, Brighton H. Owen May 2022

Predictive Performance And Teaming Via The Mist-C Ocean Hierarchy Utilizing Personality And Skills, Brighton H. Owen

All Theses

This thesis seeks to establish and define the individual, the team as an entity, and qualify various metrics to predict team performance. When several individuals come together, they form a team that is often capable of designing and developing concepts beyond the individual on their own by methods of task dispersion, goal orientation, communication, and more. With these teams comes growth and increased performance leading to more efficient processes and better metrics by which performance may be measured. To achieve this, 34 engineering students in the AerosPACE senior design program, which lasted two semesters, were asked to complete surveys in …


Investigating The Effects Of Topology On The Fracture And Failure Mechanisms Of Low Density Metamaterials, Kaitlynn Melissa Conway May 2022

Investigating The Effects Of Topology On The Fracture And Failure Mechanisms Of Low Density Metamaterials, Kaitlynn Melissa Conway

All Dissertations

Advances in additive manufacturing have enabled the creation of low density metamaterials with fine features and complex topographies. These new metamaterial topologies and size scales not previously possible broaden the spectrum of lightweight materials with unique properties that are advantageous in a variety of applications. There however is a lack of understanding of metamaterial failure and fracture behaviors. Studies tend to report only a few material properties rather than a comprehensive description of behavior. Due to this, there is a hesitancy to incorporate metamaterials into engineering designs despite proven remarkable properties. This work seeks to investigate in three parts the …


Characterization Of Friction Element Welding Using Finite Element Modeling, Ankit Varma May 2022

Characterization Of Friction Element Welding Using Finite Element Modeling, Ankit Varma

All Dissertations

Friction element welding (FEW) has been advocated as a solution to weld different materials together, with the ability to join high-strength materials for a range of thicknesses with low input energy and a short processing time. This work develops a coupled thermal-mechanical finite element model to better understand the physical mechanisms involved in the process and to predict temperature and material flow during the process. Furthermore, microstructural analysis is performed for the steel layer using a scanning electron microscope and Vickers microhardness tester to understand the variation in its grain structure and hardness. Results from the finite element model and …


Development And Application Of A Digital Twin For Chiller Plant Performance Assessment, Mihir Kale Dec 2021

Development And Application Of A Digital Twin For Chiller Plant Performance Assessment, Mihir Kale

All Theses

As the complexity of industrial equipment continues to increase, the management of the individual machines and integrated operations becomes difficult without computer tools. The availability of streaming data from manufacturing floors, plant operations, and deployed fleets can be overwhelming to analyze, although it provides opportunities to improve performance. The use of dedicated monitoring systems in the plant and field to troubleshoot machinery can be integrated within a product lifecycle management (PLM) architecture to offer greater features. PLM offers virtual processes and software tools for the design, analysis, monitoring, and support of engineering systems and products. Within this paradigm, a digital …