Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Accurate Evaluation Of The Direction-Dependent Mechanical Properties Of Ideal Single Crystals: A Comparative Ab Initio Study, Jaylan Ali Elhalawani Feb 2023

Accurate Evaluation Of The Direction-Dependent Mechanical Properties Of Ideal Single Crystals: A Comparative Ab Initio Study, Jaylan Ali Elhalawani

Theses and Dissertations

The mechanical properties of a single crystal or a grain in a polycrystalline material are highly dependent on the direction of the applied load. Key properties of interest are the Young’s modulus and the Poisson ratio in the small strain limit, and the ideal tensile strength in the large strain regime. Prior atomistic computations of these properties interchangeably used two approaches. In one approach the stress-strain response is explicitly calculated via a numerical tensile test experiment. In the second approach the second order single crystal elastic constants are computed via small deformations and then used in analytical equations to derive …


Aerosol Synthesis Of Tungsten Bronze Particles For Nir Shielding, Hao Tu Jan 2023

Aerosol Synthesis Of Tungsten Bronze Particles For Nir Shielding, Hao Tu

Theses and Dissertations

This dissertation emphasizes the need for efficient energy use in buildings and transportation due to global warming and the energy crisis. It suggests that improving energy efficiency can help reduce energy consumption and emissions and support sustainability. The dissertation introduces various transparent materials that can block near-infrared (NIR) radiation from solar radiation to save energy and money, and it highlights the growing market value of such products. The dissertation compares tungsten bronze with other NIR shielding materials and shows its advantages. The dissertation introduces a cheap and environmentally friendly method for continuously producing tungsten bronze particles via aerosol synthesis. Particle …


Challenges And Signal Processing Of High Strain Rate Mechanical Testing, Barae Lamdini May 2022

Challenges And Signal Processing Of High Strain Rate Mechanical Testing, Barae Lamdini

Theses and Dissertations

Dynamic testing provides valuable insight into the behavior of materials undergoing fast deformation. During Split-Hopkinson Pressure Bar testing, stress waves are measured using strain gauges as voltage variations that are usually very small. Therefore, an amplifier is required to amplify the data and analyze it. One of the few available amplifiers designed for this purpose is provided by Vishay Micro-Measurements which limits the user’s options when it comes to research or industry. Among the challenges of implementing the Hopkinson technology in the industry are the size and cost of the amplifier. In this work, we propose a novel design of …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Effects Of Additive Manufacturing Techniques On The Magnetocaloric Properties And Chemical Stability Of Lafexcoysi13-X-Y Alloys, Binyam Wodajo Jan 2022

Effects Of Additive Manufacturing Techniques On The Magnetocaloric Properties And Chemical Stability Of Lafexcoysi13-X-Y Alloys, Binyam Wodajo

Theses and Dissertations

Additive manufacturing (AM) is an emerging process to fabricate net shape, intricate, engineering components with minimal material waste; however, traditionally it has been largely applied to structural materials. AM of functional materials, such as magnetic materials, has received much less attention and the field is still in its infancy. To date, AM of magnetocaloric regenerators for magnetic refrigeration (an energy-efficient alternative to the conventional vapor-compression cooling technology), remains a challenge. There are several magnetic refrigerator device designs in existence today that are predicted to be highly energy-efficient, on condition that suitable working materials can be developed. This challenge in manufacturing …


Impact Dynamics Of Surfactant-Laden Droplets On Non-Wettable Coatings, Amir Esmaeili Jan 2021

Impact Dynamics Of Surfactant-Laden Droplets On Non-Wettable Coatings, Amir Esmaeili

Theses and Dissertations

Owing to their excellent water repellency, non-wettable (superhydrophobic) coatings have gained tremendous attention in the past couple of decades. Alkyl ketene dimer (AKD), an inexpensive polymer frequently used in paper industry as a sizing agent, has shown potentials to become superhydrophobic. The formation of a porous structure after curing the solidified AKD for an extra-long time (4–6 days) results in superhydrophobicity, i.e., a static contact angle with water of >150° and a roll-off angle of <10°. In this work, a facile and low-cost method was used to turn the surface of AKD superhydrophobic in a very short period of time by briefly treating the coatings, obtained from isothermally heated molten AKD at 40 °C for 3 min, with ethanol. The resulting superhydrophobicity is due to the formation of porous, entangled irregular micro/nano textures that create air cushions on the surface leading to droplet state transition from Wenzel to Cassie. As a proof of concept, the same material was applied to the co-sputtered nickel-tungsten thin films, commonly used in micro/nano-electro-mechanical systems, to improve their hydrophobicity. According to the results, at least 20% increase was observed in the dynamic contact angles of the treated substrates.

In addition, this work presents a detailed high-speed imaging analysis of the influence of the molecular weight, concentration and ionic nature of surfactants on droplet …


A Study To Evaluate Non-Uniform Phase Maps In Shape Memory Alloys Using Finite Element Method, Naren Motte Jan 2015

A Study To Evaluate Non-Uniform Phase Maps In Shape Memory Alloys Using Finite Element Method, Naren Motte

Theses and Dissertations

The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators.

This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool

ANSYS has …


Ceramic Matrix Composite Characterization Under A Combustion And Loading Environment, Andrew R. Nye Mar 2009

Ceramic Matrix Composite Characterization Under A Combustion And Loading Environment, Andrew R. Nye

Theses and Dissertations

Lightweight materials that can withstand high temperatures and corrosive environments are constantly sought after in the aerospace industry, typically for Gas Turbine Engine (GTE) application. These materials need to retain their strength throughout the long service period they would see in the combustor and turbine components of a GTE. One material that is ideal for these types of applications is an oxide/oxide Ceramic Matrix Composite (CMC). The fatigue behavior of the oxide/oxide CMC NextelTM 720/Alumina (N720/A) was investigated in a unique high temperature environment. N720/A consisted of an 8-harness satin weave of NextelTM aluminum oxide/silicon oxide fibers bound …