Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Numerical Simulations Of Transcritical Natural Convection, Ruiwen Wei, Carlo Scalo, Mario Tindaro Migliorino, Kukjin Kim, Jean-Pierre Hickey Aug 2017

Numerical Simulations Of Transcritical Natural Convection, Ruiwen Wei, Carlo Scalo, Mario Tindaro Migliorino, Kukjin Kim, Jean-Pierre Hickey

The Summer Undergraduate Research Fellowship (SURF) Symposium

In modern engineering applications, system overheating is a key issue that needs to be solved with efficient and reliable cooling technologies. Among the possible mechanisms that these are based on, natural convection cooling is one of the most frequently employed, with applications ranging from cooling of computer micro-components to large nuclear reactors. While many studies have been performed on natural convection employing supercritical or subcritical fluids, little attention has been given to fluids in their transcritical regime. The latter has the potential to yield high performances while avoiding detrimental effects of two-phase systems (e.g. cavitation). In the present study, 2D …


Well-Posedness And Convergence Of Cfd Two-Fluid Model For Bubbly Flows, Avinash Vaidheeswaran Apr 2015

Well-Posedness And Convergence Of Cfd Two-Fluid Model For Bubbly Flows, Avinash Vaidheeswaran

Open Access Dissertations

The current research is focused on developing a well-posed multidimensional CFD two-fluid model (TFM) for bubbly flows. Two-phase flows exhibit a wide range of local flow instabilities such as Kelvin-Helmholtz, Rayleigh-Taylor, plume and jet instabilities. They arise due to the density difference and/or the relative velocity between the two phases. A physically correct TFM is essential to model these instabilities. However, this is not the case with the TFMs in numerical codes, which can be shown to have complex eigenvalues due to incompleteness and hence are ill-posed as initial value problems. A common approach to regularize an incomplete TFM is …


Understanding The Global Energy Crisis, Eugene D. Coyle, Richard A. Simmons Mar 2014

Understanding The Global Energy Crisis, Eugene D. Coyle, Richard A. Simmons

Purdue University Press Books

We are facing a global energy crisis caused by world population growth, an escalating increase in demand, and continued dependence on fossil-based fuels for generation. It is widely accepted that increases in greenhouse gas concentration levels, if not reversed, will result in major changes to world climate with consequential effects on our society and economy. This is just the kind of intractable problem that Purdue University’s Global Policy Research Institute seeks to address in the Purdue Studies in Public Policy series by promoting the engagement between policy makers and experts in fields such as engineering and technology.

Major steps forward …