Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder May 2018

Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder

Graduate Theses and Dissertations

Bone is a composite biomaterial with a structural load-bearing function. Understanding the biomechanics of bone is important for characterizing factors such as age, trauma, or disease, and in the development of scaffolds for tissue engineering and bioinspired materials. At the nanoscale, bone is primarily composed of collagen protein, apatite crystals, and water. Though several studies have characterized nanoscale bone mechanics as the mineral content changes, the effect of water, mineral, and carbon nanotube (CNT) content and distribution in fibril gap and overlap regions is unexplored. This study used molecular dynamics to investigate the change in collagen fibril deformation mechanisms as …