Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Department of Mechanical and Materials Engineering: Faculty Publications

Graph theory

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao Nov 2022

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a model-driven feedforward control approach to mitigate thermal-induced flaw formation in laser powder bed fusion (LPBF) additive manufacturing process. The key idea was to avert heat buildup in a LPBF part before it is printed by adapting process parameters layer-by-layer based on insights from a physics-based thermal simulation model. The motivation being to replace cumbersome empirical build-and-test parameter optimization with a physics-guided strategy. The approach consisted of three steps: prediction, analysis, and correction. First, the temperature distribution of a part was predicted rapidly using a graph theory-based computational thermal model. Second, the model-derived thermal trends were …


Quantification Of Ultraprecision Surface Morphology Using An Algebraic Graph Theoretic Approach, Prahalad Rao, Satish T. S. Bukkapatnam, Zhenyu (James) Kong, Omer F. Beyca, Kenneth Case, Ranga Komanduri Jan 2015

Quantification Of Ultraprecision Surface Morphology Using An Algebraic Graph Theoretic Approach, Prahalad Rao, Satish T. S. Bukkapatnam, Zhenyu (James) Kong, Omer F. Beyca, Kenneth Case, Ranga Komanduri

Department of Mechanical and Materials Engineering: Faculty Publications

Assessment of progressive, nano-scale variation of surface morphology during ultraprecision manufacturing processes, such as fine-abrasive polishing of semiconductor wafers, is a challenging proposition owing to limitations with traditional surface quantifiers. We present an algebraic graph theoretic approach that uses graph topological invariants for quantification of ultraprecision surface morphology. The graph theoretic approach captures heterogeneous multi-scaled aspects of surface morphology from optical micrographs, and is therefore valuable for in situ real-time assessment of surface quality. Extensive experimental investigations with specular finished (Sa ~ 5 nm) blanket copper wafers from a chemical mechanical planarization (CMP) process suggest that the proposed method was …