Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Method Of Embedded Imperfections For The Direct Simulation Of Deformation Instabilities In Film-Substrate Structures, Siavash Nikravesh Kazeroni Apr 2022

Method Of Embedded Imperfections For The Direct Simulation Of Deformation Instabilities In Film-Substrate Structures, Siavash Nikravesh Kazeroni

Mechanical Engineering ETDs

In this dissertation, a novel finite-element methodology called “embedded imperfections” is proposed and employed for computationally simulating various types of deformation instabilities observed in film-substrate structures subjected to mechanical loading. The approach involves the incorporation of elements having distinctive material properties within the film-substrate interface. One can interpret this practice as a deliberate distribution of material defects within the numerical model. It has been shown that embedded imperfections not only can trigger the onset of instability, but also can lead to “direct” simulation of deformation instability problems in that primary and subsequent instability modes can all be captured in a …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng May 2020

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


The Mathematical Theory Of Deformation Arrest In Large-Strain Dynamic Plasticity, Brendan A. Kullback Apr 2017

The Mathematical Theory Of Deformation Arrest In Large-Strain Dynamic Plasticity, Brendan A. Kullback

Mechanical Engineering ETDs

Ductile structural components subjected to explosive loadings exhibit a large range of behaviors. The response of beams, walls, and blast doors is estimated using two methods. The engineering level approaches are highly simplified and neglect much of the relevant physics while the use of finite element or shock-code simulation is expensive and not suited to rapid problem solving and parameter studies. In this dissertation, a medium fidelity reduced order modeling approach has been derived to capture the most relevant physics governing rupture of ductile bodies dynamically deforming in tension.

Solution of the inertially stretching jet is used to reveal the …