Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich Jun 2016

Experimental Building Demonstration Model With Viscous Fluid Dampers, Blake Thomas Reeve, Brianna Jean Kufa, Aden Malek Stepanians, Sophie Carmion Ratkovich

Architectural Engineering

The Architectural Engineering major places a heavy emphasis on structural dynamics and the role of wind and seismic loading in building analysis and design. Buildings of high importance that are critical to community function, such as hospitals, often utilize supplemental damping devices like supplemental viscous fluid dampers or base isolators to reduce the overall demands on the structural system. The design and analysis of these dampers are typically not taught at the undergraduate level, and is frequently performed by mechanical engineers, in lieu of structural engineers.

To better understand and research building behavior with supplemental damping devices, our multi-disciplinary team …


Design Of A Folding V-Scraper With Roller For Orchard Applications, Chase Ulrich May 2016

Design Of A Folding V-Scraper With Roller For Orchard Applications, Chase Ulrich

BioResource and Agricultural Engineering

This senior project discusses the design of a folding 15 ft. wide leveler for orchard use. This design utilized a category 2 three-point hitch to connect the implement to a tractor. The folding mechanism uses the tractors hydraulic system to actuate the folding movement using hydraulic cylinders. The blades, when wings in operational position, are rigid with one another after some assembly. When the implement is folded the width is reduced to nine feet.


Haul Truck Tires Recycling, Jessica N. Lizarazu May 2016

Haul Truck Tires Recycling, Jessica N. Lizarazu

Chemical Engineering Undergraduate Honors Theses

The disposal of large Off-the-Road (OTR) tires is an increasingly important concern. These tires can weigh up to 8,450 pounds with an overall diameter and width of approximately 140.7 inches and 45.1 inches respectively. OTR tires are used for mining vehicles such as haul trucks, wheel loaders, backhoes, graders, and trenchers. These new tires cost between $38,000 and $50,000 each, depending on multiple factors including oil prices and the cyclical nature of the industry. Haul trucks contain six tires per vehicle, and mines replace these tires around every 9-12 months. Statistics regarding discarded OTR tires are not provided by the …


Ramifications Of Projectile Velocity On The Ballistic Dart Penetration Of Sand, Peter Anthony Sable Apr 2016

Ramifications Of Projectile Velocity On The Ballistic Dart Penetration Of Sand, Peter Anthony Sable

Master's Theses (2009 -)

With the advent of novel in-situ experimental measurement techniques, highly resolved quantitative observations of dynamic events within granular media can now be made. In particular, high speed imagery and digital analysis now allow for the ballistic behaviors of sand to be examined not only across a range of event velocities but across multiple length scales. In an attempt to further understand the dynamic behavior of granular media, these new experimental developments were implemented utilizing high speed photography coupled with piezo-electric stress gauges to observe visually accessible ballistic events of a dart penetrating Ottawa sand. Projectile velocities ranged from 100 to …


The Design And Construction Of A Torque Measuring Arm For An Air Motor, Logan Dearinger Jan 2016

The Design And Construction Of A Torque Measuring Arm For An Air Motor, Logan Dearinger

All Undergraduate Projects

There is a system efficiency lab that sits in the thermodynamics lab of the Mechanical Engineering Technologies department. To expand this lab, a torque measuring device was needed to measure the torsional force that the pump exerts on the air motor. The expansion of this lab is important to give a better understanding of how the different mechanical parts effect the efficiency of the overall system. The first step in the expansion process was the design of a suitable torque measuring device. The most efficient design was a simple one with minimal moving parts. When the air motor is energized …


Mechanically Activated Combustion Synthesis Of Molybdenum Borosilicides For Ultrahigh-Temperature Structural Applications, Alan Alberto Esparza Hernandez Jan 2016

Mechanically Activated Combustion Synthesis Of Molybdenum Borosilicides For Ultrahigh-Temperature Structural Applications, Alan Alberto Esparza Hernandez

Open Access Theses & Dissertations

The desire to improve the efficiency of power generation gas-turbines has led to a relentless quest for new, ultrahigh-temperature structural materials to replace the current nickel-based superalloys. These materials have reached the maximum allowable operating temperature determined by the melting temperature of these alloys, which is about 1150 °C. These materials could be replaced by molybdenum silicides and borosilicides based on Mo5SiB 2 (T2) phase due to their high melting point and mechanical properties. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at elevated temperatures. One novel approach to improve these properties is …


Damage Tolerance And Assessment Of Unidirectional Carbon Fiber Composites, Mark David Flores Jan 2016

Damage Tolerance And Assessment Of Unidirectional Carbon Fiber Composites, Mark David Flores

Open Access Theses & Dissertations

Composites are beginning to be used in a variety of different applications throughout industry. However, certification and damage tolerance is a growing concern in many aerospace and marine applications. Although compression-after-impact have been studied thoroughly, determining a damage tolerance methodology that accurately characterizes the failure of composites has not been established. An experimental investigation was performed to study the effect of stacking sequence, low-velocity impact response, and residual strength due to compression and fatigue. Digital Image Correlation (DIC) captured the strains and deformation of the plate due to compression. Computational investigations integrated non-destructive techniques (C-Scan, X-Ray) to determine the extent …


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can …


Structural, Dielectric, And Ferroelectric Characterization Of Lead-Free Calcium-Cerium Co-Doped Batio3 Ceramics, Juan Alberto Duran Jan 2016

Structural, Dielectric, And Ferroelectric Characterization Of Lead-Free Calcium-Cerium Co-Doped Batio3 Ceramics, Juan Alberto Duran

Open Access Theses & Dissertations

Structure, morphology, and regulation of the dielectric properties via close-composition intervals is demonstrated for variable-cerium, constant-calcium co-doped barium titanate (Ba0.80Ca0.20CeyTi1-yO3; y=0.0-0.25; referred to BCCT). The effect of variable Ce-content on the structure and dielectric properties of BCCT is investigated. X-ray diffraction spectra confirms the studied samples are mainly in BT tetragonal phase with a small secondary phase detected as CaTiO3 in BCCT for y = 0.20 and 0.25. However, the lattice parameter reduction was evident with increasing Ce-content. Composition-driven dielectric constant leap (4,000-5,500) was observed from intrinsic BCT to BCCT for (y = 0.0-0.04). The temperature dependent dielectric constant showed …


Yttria Rich Tbcs As Candidates For Cmas Resistant Top Coats, Juan Jose Gomez Jan 2016

Yttria Rich Tbcs As Candidates For Cmas Resistant Top Coats, Juan Jose Gomez

Open Access Theses & Dissertations

State of the art thermal barrier coatings (TBC) commonly made of 7-8 wt. % yttria stabilized zirconia (7YSZ) are used in modern gas turbines to generate a thermal protection to the underlying super alloy components. TBCs allow higher operating temperatures for hot gas path components, thus, generating higher engine efficiency. The infiltration of molten glassy mineral deposits composed of CaO-MgO-Al2O3-SiO2 (CMAS) represents one of the major threats in reducing performance and service life in aero and land based gas turbine engines. The CMAS deposits are ingested into the engine carried commonly in sand, runways debris, fly ash and volcanic ash. …


The University Of Akron Human Powered Vehicle Team, Maria E. Rizzo, Andrew J. Derhammer, Christopher M. Trowbridge, Timothy M. Nutt, Joseph R. Boyd, Jeremy W. Marcum, Jonathan E. Adams, Donald G. Haiss, Julia Wood, Brian D. Goshia, Scott T. Fagan, Joshua D. Everhard, Rebecca L. Slivka Jan 2016

The University Of Akron Human Powered Vehicle Team, Maria E. Rizzo, Andrew J. Derhammer, Christopher M. Trowbridge, Timothy M. Nutt, Joseph R. Boyd, Jeremy W. Marcum, Jonathan E. Adams, Donald G. Haiss, Julia Wood, Brian D. Goshia, Scott T. Fagan, Joshua D. Everhard, Rebecca L. Slivka

Williams Honors College, Honors Research Projects

The University of Akron Human Powered Vehicle Team’s 2016 vehicle, Klokan, was designed, manufactured and tested with safety, reliability, performance and ease of use in mind. The vehicle is a fully faired tadpole trike with a lightweight aluminum frame constructed from 6061-T6 tubing having a total weight of 8.9 lbs. To complement the lightweight frame, the fairing is constructed from polycarbonate, PETG and carbon fiber strips which combine into a lightweight, easy to manufacture weather barrier and aerodynamic structure. Klokan was designed to be a safe and efficient mode of everyday transportation which ensures that riders are sufficiently protected by …