Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

On The Investigation Of Hot Tearing Behavior Of Continuous Cast Steel, Yanru Lu Jan 2020

On The Investigation Of Hot Tearing Behavior Of Continuous Cast Steel, Yanru Lu

Masters Theses

”Hot tearing has long been recognized as a major problem that plagues the development of the continuous casting process and results in low-quality products. Understanding of the mechanisms and the required conditions for the hot tearing formation is important for industries but has not been well-established yet. Thus, this research focuses on the hot tearing issue observed in continuous cast steel, by providing a summary of the current research progress and then introducing a new laboratory method to determine the thermo-mechanical properties relevant to hot tearing of different steel grades under different solidification conditions. In this method, an apparatus was …


In-Situ X-Ray Imaging Of The Selective Laser Melting Process, Meelap M. Coday Jan 2020

In-Situ X-Ray Imaging Of The Selective Laser Melting Process, Meelap M. Coday

Masters Theses

"Fusion-based metal additive manufacturing (AM) has garnered much interest in recent decades. Despite the popularity of fusion-based AM technologies such as selective laser melting (SLM), there are still fundamental questions and uncertainties that need to be addressed. In this work, we focus on the understanding of the undercooling in the SLM process and the uncertainties induced by the laser beam size, power, and scan speed. First, we report the estimation of undercooling in the SLM process from the solidification rate measured by in-situ high-speed synchrotron x-ray imaging, based on the dendrite growth velocity model. The undercooling changes as a function …


The Influence Of Welding Parameters On Initial Instability Dynamics During Solidification, Fengyi Yu, Yanhong Wei, Xiaohong Zhan Oct 2016

The Influence Of Welding Parameters On Initial Instability Dynamics During Solidification, Fengyi Yu, Yanhong Wei, Xiaohong Zhan

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Simulation Of The Through Process Of Aerospace Titanium Alloy Casting Filling, Solidification, And Hot Isostatic Pressing, Jian-Xin Zhou, Zhao Guo, Ya-Jun Yin, Chang-Chang Liu Oct 2016

Numerical Simulation Of The Through Process Of Aerospace Titanium Alloy Casting Filling, Solidification, And Hot Isostatic Pressing, Jian-Xin Zhou, Zhao Guo, Ya-Jun Yin, Chang-Chang Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Study On Growth Model Of Cellular Automata Method In Solidification Simulation, Zhao Guo, Jian-Xin Zhou, Ya-Jun Yin, Chang-Chang Liu Oct 2016

Study On Growth Model Of Cellular Automata Method In Solidification Simulation, Zhao Guo, Jian-Xin Zhou, Ya-Jun Yin, Chang-Chang Liu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks Aug 2013

Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model, based on a Cellular Automaton (CA) - Finite Element (FE) method, has been developed to simulate microstructure evolution during metal solidification for a laser based additive manufacturing process. The macroscopic FE calculation was designed to update the temperature field and simulate a high cooling rate. In the microscopic CA model, heterogeneous nucleation sites, preferential growth orientation and dendritic grain growth kinetics were simulated. The CA model was able to show the entrapment of neighboring cells and the relationship between undercooling and the grain growth rate. The model predicted the dendritic grain size, structure, and morphological evolution during …


Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk Aug 2007

Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model is developed to simulate the evolution of the solidification microstructure during the laser deposition process. The microstructure model is coupled with a comprehensive macroscopic thermodynamic model. This model simulates dendritic grain structures and morphological evolution in solidification. Based on the cellular automata approach, this microstructure model takes into account the heterogeneous nucleation both within the melt pool and at the substrate/melt interface, the growth kinetics, and preferential growth directions of dendrites. Both diffusion and convection effects are included. This model enables prediction and visualization of grain structures during and after the deposition process. This model is applied …


An Experimental Study Of Molten Microdroplet Surface Deposition And Solidification: Transient Behavior And Wetting Angle Dynamics, Daniel Attinger, Z. Zhao, D. Poulikakos Apr 2000

An Experimental Study Of Molten Microdroplet Surface Deposition And Solidification: Transient Behavior And Wetting Angle Dynamics, Daniel Attinger, Z. Zhao, D. Poulikakos

Daniel Attinger

The basic problem of the impact and solidification of molten droplets on a substrate is of central importance to a host of processes. An important and novel such process in the area of micromanufacturing is solder jetting where microscopic solder droplets are dispensed for the attachment of microelectronic components. Despite the recent appearance of a few numerical studies focusing on the complex transient aspects of this process, no analogous experimental results have been reported to date to the best of our knowledge. Such a study is reported in this paper. Eutectic solder (63Sn37Pb) was melted to a preset superheat and …