Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2010

Series

Institution
Keyword
Publication

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

College Of Engineering Senior Design Competition Fall 2010, University Of Nevada, Las Vegas Dec 2010

College Of Engineering Senior Design Competition Fall 2010, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


The Relationship Between Induced Fluid Structure And Boundary Slip In Nanoscale Polymer Films, Nikolai V. Priezjev Nov 2010

The Relationship Between Induced Fluid Structure And Boundary Slip In Nanoscale Polymer Films, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

The molecular mechanism of slip at the interface between polymer melts and weakly attractive smooth surfaces is investigated using molecular dynamics simulations. In agreement with our previous studies on slip flow of shear-thinning fluids, it is shown that the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that at sufficiently high shear rates, the slip flow over atomically flat crystalline surfaces is anisotropic. It is demonstrated numerically that the friction coefficient at the liquid-solid interface (the ratio of viscosity and slip length) undergoes a transition from a …


Nanofibers And Nanoparticles From The Insect-Capturing Adhesive Of The Sundew (Drosera) For Cell Attachment, Mingjun Zhang, Scott C. Lenaghan, Lijin Xia, Lixin Dong, Wei He, William R. Henson, Xudong Fan Aug 2010

Nanofibers And Nanoparticles From The Insect-Capturing Adhesive Of The Sundew (Drosera) For Cell Attachment, Mingjun Zhang, Scott C. Lenaghan, Lijin Xia, Lixin Dong, Wei He, William R. Henson, Xudong Fan

Faculty Publications and Other Works -- Mechanical, Aerospace and Biomedical Engineering

Background

The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation.

Results

Atomic force microscopy (AFM) conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded …


Optimization Of Selective Laser Sintering Process For Fabrication Of Zirconium Diboride Parts, Ming-Chuan Leu, Shashwatashish Pattnaik, Greg Hilmas Aug 2010

Optimization Of Selective Laser Sintering Process For Fabrication Of Zirconium Diboride Parts, Ming-Chuan Leu, Shashwatashish Pattnaik, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective Laser Sintering (SLS) was investigated to fabricate Zirconium Diboride (ZrB2) parts for ultra-high temperature applications. Experiments were conducted to determine values of SLS process parameters (laser power, scan speed, line spacing, and layer thickness) that can be used to build ZrB2 parts with high integrity and sharp geometrical features. A sacrificial plate with a proper number of layers (determined from experimentation) separated from the main part was built in order to reduce thermal gradients when building the main part. The sacrificial plate was found to assist in eliminating cracks in the bottom of the main part. …


Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day Aug 2010

Freeze Extrusion Fabrication Of 13-93 Bioactive Glass Scaffolds For Bone Repair, Tieshu Huang, Nikhil D. Doiphode, M. N. Rahaman, Ming-Chuan Leu, B. Sonny Bal, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

There is an increasing demand for synthetic scaffolds with the requisite biocompatibility, internal architecture, and mechanical properties for the bone repair and regeneration. In this work, scaffolds of a silicate bioactive glass (13-93) were prepared by a freeze extrusion fabrication (FEF) method and evaluated in vitro for potential applications in bone repair and regeneration. The process parameters for FEF production of scaffolds with the requisite microstructural characteristics, as well as the mechanical and cell culture response of the scaffolds were evaluated. After binder burnout and sintering (60 min at 700°C), the scaffolds consisted of a dense glass network with interpenetrating …


Computer Aided Contour Profiling Of High Strength Deposits, Sriram Praneeth Isanaka, Amar Bala Sridhar, Frank W. Liou, Joseph William Newkirk Aug 2010

Computer Aided Contour Profiling Of High Strength Deposits, Sriram Praneeth Isanaka, Amar Bala Sridhar, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing processes suffer from the effect of ripples, edge rounding and surface variations. To reduce their effect, ideal process parameters for the laser deposition process were investigated. Also, a new method was identified to analyze deposits by accurately plotting their contours. This was achieved through point cloud data of the deposits generated using coordinate measurement and 3D scanning. Curve fitting was performed on the data in Matlab to generate the contours of the deposit. The intercept values, heights, and contact angle of the curves give an indication of the uniformity of deposits and aid in reducing defects.


Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2010

Selective Laser Sintering Of 13-93 Bioactive Glass, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Bioactive glasses are more promising than biopolymers in fabricating scaffolds for bone tissue repair because they convert to hydroxyapatite, when implanted in vivo. Both direct and indirect selective laser sintering (SLS) methods of 13-93 bioactive glass were considered in this research to study the feasibility of fabricating scaffolds for bone repair applications. Stearic acid was used as the binder in the indirect method to fabricate the scaffolds. The green scaffolds underwent binder burnout and sintering at various soaking conditions between 675⁰C and 700⁰C, achieving a maximum compressive strength of 23.6 MPa, which is higher than that of the human cancellous …


Structural And Magnetic Properties Of Neodymium - Iron - Boron Clusters, Jeremy J. Anderson Jul 2010

Structural And Magnetic Properties Of Neodymium - Iron - Boron Clusters, Jeremy J. Anderson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Using inert gas condensation techniques the properties of sputtered neodymium-iron-born clusters were investigated. A D.C. magnetron sputtering source created vaporous Nd-Fe-B which was then condensed into clusters and deposited onto silicon substrates. A composite target of Nd-Fe-B discs on an iron plate and a composite target of Nd-(Fe-Co)-B were utilized to create clusters. The clusters were coated with a carbon layer through R.F. sputtering to prevent oxidation.

Samples were investigated in the TEM and showed a size distribution with an average particle diameter of 8.11 nm. The clusters, upon deposition, were amorphous as indicated by diffuse diffraction patterns obtained through …


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Slip Boundary Conditions For The Moving Contact Line In Molecular Dynamics And Continuum Simulations, Nikolai V. Priezjev, Anoosheh Niavarani Mar 2010

Slip Boundary Conditions For The Moving Contact Line In Molecular Dynamics And Continuum Simulations, Nikolai V. Priezjev, Anoosheh Niavarani

Mechanical and Materials Engineering Faculty Publications

The problem of the moving contact line between two immiscible fluids on a smooth surface is revisited using molecular dynamics (MD) and continuum simulations. In MD simulations a finite slip is allowed by choosing incommensurate wall-fluid densities and weak wall-fluid interaction energies. The shear stresses and velocity fields are extracted carefully in the bulk fluid region as well as near the moving contact line. In agreement with previous studies, we found slowly decaying partial slip region away from the contact line. In steady-state shear flows we extract the friction coefficient along the liquid-solid interface, the local slip length, and the …


Functionally Graded Materials By Laser Metal Deposition (Preprint), Syamala R. Pulugurtha, Joseph William Newkirk, Frank W. Liou, Hsin-Nan Chou Mar 2010

Functionally Graded Materials By Laser Metal Deposition (Preprint), Syamala R. Pulugurtha, Joseph William Newkirk, Frank W. Liou, Hsin-Nan Chou

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of functionally graded materials (FGMs) by laser metal deposition (LMD) has the potential to offer solutions to key engineering problems over the traditional metalworking techniques. But the issues that need to be addressed while building FGMs are intermixing in the layers and cracking due to the residual stresses. This paper is to present the study of the effect of process parameters (laser power and travel speed) on the degree of dilution between the substrate (or, previous layer) and powder material for few metallurgical systems.


Modeling The Combined Effect Of Surface Roughness And Shear Rate On Slip Flow Of Simple Fluids, Nikolai V. Priezjev, Anoosheh Niavarani Jan 2010

Modeling The Combined Effect Of Surface Roughness And Shear Rate On Slip Flow Of Simple Fluids, Nikolai V. Priezjev, Anoosheh Niavarani

Mechanical and Materials Engineering Faculty Publications

Molecular dynamics (MD) and continuum simulations are carried out to investigate the influence of shear rate and surface roughness on slip flow of a Newtonian fluid. For weak wall-fluid interaction energy, the nonlinear shear-rate dependence of the intrinsic slip length in the flow over an atomically flat surface is computed by MD simulations. We describe laminar flow away from a curved boundary by means of the effective slip length defined with respect to the mean height of the surface roughness. Both the magnitude of the effective slip length and the slope of its rate-dependence are significantly reduced in the presence …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.