Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Model-Based Design Of An Optimal Lqg Regulator For A Piezoelectric Actuated Smart Structure Using A High-Precision Laser Interferometry Measurement System, Grant P. Gallagher Jun 2022

Model-Based Design Of An Optimal Lqg Regulator For A Piezoelectric Actuated Smart Structure Using A High-Precision Laser Interferometry Measurement System, Grant P. Gallagher

Master's Theses

Smart structure control systems commonly use piezoceramic sensors or accelerometers as vibration measurement devices. These measurement devices often produce noisy and/or low-precision signals, which makes it difficult to measure small-amplitude vibrations. Laser interferometry devices pose as an alternative high-precision position measurement method, capable of nanometer-scale resolution. The aim of this research is to utilize a model-based design approach to develop and implement a real-time Linear Quadratic Gaussian (LQG) regulator for a piezoelectric actuated smart structure using a high-precision laser interferometry measurement system to suppress the excitation of vibratory modes.

The analytical model of the smart structure is derived using the …


Evaluation Of Tensile Properties For Selective Laser Melted 316l Stainless Steel And The Influence Of Inherent Process Features, Paul Swartz Jun 2019

Evaluation Of Tensile Properties For Selective Laser Melted 316l Stainless Steel And The Influence Of Inherent Process Features, Paul Swartz

Master's Theses

Optimal print parameters for additively manufacturing 316L stainless steel using selective laser melting (SLM) at Cal Poly had previously been identified. In order to further support the viability of the current settings, tensile material characteristics were needed. Furthermore, reliable performance of the as-printed material had to be demonstrated. Any influence on the static performance of parts in the as-printed condition inherent to the SLM manufacturing process itself needed to be identified. Tensile testing was conducted to determine the properties of material in the as-printed condition. So as to have confidence in the experimental results, other investigations were also conducted to …


Mechanical Characterization Of Selectively Laser Melted 316l Stainless Steel Body Centered Cubic Unit Cells And Lattice Of Varying Node Radii And Strut Angle, Christopher James Hornbeak Jun 2018

Mechanical Characterization Of Selectively Laser Melted 316l Stainless Steel Body Centered Cubic Unit Cells And Lattice Of Varying Node Radii And Strut Angle, Christopher James Hornbeak

Master's Theses

An experimental study of several variants of radius and strut angle of the body centered cubic unit cell was performed to determine the mechanical properties and failure mechanisms of the mesostructure. Quasi static compression tests were performed on an Instron® universal testing machine with a 50kN load cell at 0.2mm/min. The test samples were built using a SLM Solutions 125 selective laser melting machine with 316L stainless steel. Test specimens were based on 5mm cubic unit cells, with a strut diameter 10% of the unit cell size, with skins on top and bottom to provide a cantilever boundary constraint. Specimens …


The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney Feb 2017

The Effect Of Biocomposite Material In A Composite Structure Under Compression Loading, Benjamin Andrew Sweeney

Master's Theses

While composite structures exhibit exceptional strength and weight saving possibilities for engineering applications, sometimes their overall cost and/or material performance can limit their usage when compared to conventional structural materials. Meanwhile ‘biocomposites’, composite structures consisting of natural fibers (i.e. bamboo fibers), display higher cost efficiency and unique structural benefits such as ‘sustainability’. This analysis will determine if the integration of these two different types of composites are beneficial to the overall structure. Specifically, the structure will consist of a one internal bamboo veneer biocomposite ply; and two external carbon fiber weave composite plies surrounding the bamboo biocomposite. To acquire results …


Design And Testing Of A Top Mask Projection Ceramic Stereolithography System For Ceramic Part Manufacturing, Dylan Robert De Caussin Jun 2016

Design And Testing Of A Top Mask Projection Ceramic Stereolithography System For Ceramic Part Manufacturing, Dylan Robert De Caussin

Master's Theses

Ceramic manufacturing is an expensive process with long lead times between

the initial design and final manufactured part. This limits the use of ceramic as a viable material unless there is a large project budget or high production volume associated with the part. Ceramic stereolithography is an alternative to producing low cost parts through the mixing of a photo curable resin and ceramic particles. This is an additive manufacturing process in which each layer is built upon the previous to produce a green body that can be sintered for a fully dense ceramic part.

This thesis introduces a new approach …


Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv Jun 2016

Finite Element Modeling Of Delamination Damage In Carbon Fiber Laminates Subject To Low-Velocity Impact And Comparison With Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation, George Rodriguez Iv

Master's Theses

Carbon fiber reinforced composites are utilized in many design applications where high strength, low weight, and/or high stiffness are required. While composite materials can provide high strength and stiffness-to-weight ratios, they are also more complicated to analyze due to their inhomogeneous nature. One important failure mode of composite structures is delamination. This failure mode is common when composite laminates are subject to impact loading.

Various finite element methods for analyzing delamination exist. In this research, a modeling strategy based on contact tiebreak definitions in LS-DYNA®was used. A finite element model of a low-velocity impact event was created to …


Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock Dec 2015

Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock

Master's Theses

Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from …


Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith Dec 2013

Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith

Master's Theses

Mode I interlaminar fracture of 3k 8-Harness-Satin Carbon cloth, with identical fill and weft yarns, pre-impregnated with Newport 307 resin was investigated through the DCB test (ASTM D5528). Crack propagations along both the fill and weft yarns were considered for both post-bonded (co-bonded) and co-cured laminates. A patent-pending delamination insertion method was compared to the standard Teflon film option to assess its applicability to mode I fracture testing. The Modified Beam Theory, Compliance Calibration method, and Modified Compliance Calibration method were used for comparative purposes for these investigations and to evaluate the validity of the proposed Equivalent Stiffness (EQS) method. …


Material Characterization Of Nitinol Wires For The Design Of Actuation Systems, Sean P. Kennedy Aug 2013

Material Characterization Of Nitinol Wires For The Design Of Actuation Systems, Sean P. Kennedy

Master's Theses

A series of tests were performed on nickel-titanium alloy wire, also known as nitinol, to determine the plausibility of designing an actuator using this wire as the method of actuation. These tests have been designed to fully characterize how the wire behaves under steady state and transient conditions allowing for a specific wire selection to be made given known actuator specifications which will result in an efficient design. The wire transient data can be used to design a controller which reduces the actuation time. The research done for the overall project covers a wide scope including wire hysteresis, nitinol transition …


Material Characterization And The Effects Of Moisture And Drying On Injection Molded Torlon 5030, Michael R. Di Re Feb 2013

Material Characterization And The Effects Of Moisture And Drying On Injection Molded Torlon 5030, Michael R. Di Re

Master's Theses

The effects of water absorption and drying were studied on injection molded Torlon 5030, a high performance thermoplastic fabricated by Solvay Specialty Polymers. Torlon 5030 contains 30% by weight glass fibers in a polyamide-imide base resin. The objective behind this work was to test and better define relevant properties for industrial applications using this material. While the material design guide offers information on many mechanical properties including tensile, fatigue, and creep data; there is little to no publicly published data on the effects of water absorption and any subsequent drying of Torlon 5030. Blistering was also studied. With exposure to …


Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo Jun 2012

Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo

Master's Theses

ABSTRACT

Fabrication and Characterization of Torsional Micro-Hinge Structures

Mike Marrujo

There are many electronic devices that operate on the micrometer-scale such as Digital Micro-Mirror Devices (DMD). Micro actuators are a common type of DMD that employ a diaphragm supported by torsional hinges, which deform during actuation and are critical for the devices to have high stability and reliability. The stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. Electrostatically driven micro actuators observe to have a fully recoverable non-linear viscoelastic response. The device consists of a micro-hinge which is suspended by two …


Finite Element Modeling Of Ballistic Impact On A Glass Fiber Composite Armor, Dan M. Davis Jun 2012

Finite Element Modeling Of Ballistic Impact On A Glass Fiber Composite Armor, Dan M. Davis

Master's Theses

Finite Element Modeling of Ballistic Impact on a Glass Fiber Composite Armor

Dan Davis

Experiments measuring the ballistic performance of a commercially available fiberglass armor plate were used to guide the development of constitutive laws for a finite element model of the impact. The test samples are commercially available armor panels, made from E-glass fiber reinforced polyester rated to NIJ level III. Quasi-static tensile tests were used to establish material properties of the test panels. These properties were then used to create models in the explicit finite element code LSDYNA.

Ballistic impact testing of the panels was conducted using a …


Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian May 2012

Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian

Master's Theses

An injection moldable chopped fiber composite actuator with detailed drawing and tolerances was designed within one year. A vendor was selected and a quote for injection molding tooling cost for production was obtained and the first prototype was built in addition of six months. The risks are identified and material characterization tests are proposed.

The objective of this project was redesigning an aluminum made actuator with a continuous fiber composite for weight saving purposes. After searching the literature and consulting with experts in the field it was concluded that manufacturing costs associated with continuous fiber composite are 3 times as …


The Design And Fabrication Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Robert Gonsalves Feb 2012

The Design And Fabrication Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Robert Gonsalves

Master's Theses

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of a silicon wafer and Pyrex glass. Microfabrication techniques were used to etch channels into the silicon wafer. Holes were wet-drilled into the Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was anodically bonded to the etched silicon wafer to enclose the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. A syringe containing a room temperature CdSe solution was interfaced to the microfluidic reactor by using Poly (dimethylsiloxane) (PDMS) as an …


Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman Sep 2011

Evaluation Of Cathode Materials For Low Temperature (500-700c) Solid Oxide Fuel Cells, Alexander M. Lassman

Master's Theses

Solid oxide fuel cells (SOFC) have gained a great deal of interest, due to their potential for high efficiency power generation and ability to utilize hydrogen fuel, as well as various hydrocarbon-based fuels. A recent trend in SOFC development has been towards lower operating temperatures (500-700°C), which can substantially reduce the cost and complexity of the system. This thesis presents an investigation into state of the art Ba- and La- based cathode materials for use in low temperature (500-700°C) solid oxide fuel cells.

Synthesis of A-site deficient [A=0.97] Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) was …


Air Plasma Sprayed Thermal Barrier Coatings: Experiments And Finite Element Analysis, Charles H. Thistle Aug 2011

Air Plasma Sprayed Thermal Barrier Coatings: Experiments And Finite Element Analysis, Charles H. Thistle

Master's Theses

The purpose of this research was to examine the primary in-service failure mechanism of an air plasma sprayed thermal barrier coating commonly used in combustor applications, and to use that failure mechanism as a basis in developing a life prediction strategy. The research consisted of an experimental phase, in which the failure mechanism was identified and key features of the coating system measured, and a modeling phase, in which the findings of the experimental phase were used to build a system specific finite element model of the coating in order to extract quantitative data relevant to coating life.

Observations were …


An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran Dec 2010

An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran

Master's Theses

This thesis involves the development of a fiberglass-foam composite sandwich structure with the introduction of delamination arrestment keys; therefore, a study of an initially delaminated composite sandwich structure was the experimental analysis on multiple configurations in how the arrestment keys are placed.

The first part of this thesis research was to the experimental design and manufacturing of the composite sandwich plates. These plates were later cut down to the specific test dimensions and manufacturing processes for the composite sandwich plates and test specimens were created. The composite sandwich plates were manufactured using a vacuum resin infusion process. The dimensions of …


Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor Aug 2009

Development Of A Low Cost Handheld Microfluidic Phosphate Colorimeter For Water Quality Analysis, Sean C. Kaylor

Master's Theses

This thesis describes the design, fabrication, and testing process for a microfluidic phosphate colorimeter utilized for water quality analysis. The device can be powered by, and interfaced for data collection with, a common cell phone or laptop to dramatically reduce costs. Unlike commercially available colorimeters, this device does not require the user to measure or mix sample and reagent. A disposable poly(dimethylsiloxane) (PDMS) microfluid chip, powered by an absorption pumping mechanism, was used to draw water samples, mix the sample at a specific ratio with a molybdovanadate reagent, and load both fluids into an onboard cuvette for colorimetric analysis. A …


Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier Jul 2009

Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier

Master's Theses

Rapid battery exchange systems were built for an electric van and pedal assist electric bike as a method of eliminating the need to recharge the vehicles batteries in order to increase the feasibility of using electric propulsion as a method of efficient student transportation. After selecting proper materials it was found that the systems would need a protective coating to ensure consistent operation. 1020 cold rolled steel samples coated with multiple thicknesses of vinyl resin paint, epoxy resin paint, and powder coating were subjected to environmental wear tests in order to determine if the type and thickness of common protective …