Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Structural And Magnetic Properties Of Neodymium - Iron - Boron Clusters, Jeremy J. Anderson Jul 2010

Structural And Magnetic Properties Of Neodymium - Iron - Boron Clusters, Jeremy J. Anderson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Using inert gas condensation techniques the properties of sputtered neodymium-iron-born clusters were investigated. A D.C. magnetron sputtering source created vaporous Nd-Fe-B which was then condensed into clusters and deposited onto silicon substrates. A composite target of Nd-Fe-B discs on an iron plate and a composite target of Nd-(Fe-Co)-B were utilized to create clusters. The clusters were coated with a carbon layer through R.F. sputtering to prevent oxidation.

Samples were investigated in the TEM and showed a size distribution with an average particle diameter of 8.11 nm. The clusters, upon deposition, were amorphous as indicated by diffuse diffraction patterns obtained through …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …