Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Flexural Wave Manipulation By Non-Hermitian Planar Elastic Metasurface, Katerina Stojanoska May 2023

Flexural Wave Manipulation By Non-Hermitian Planar Elastic Metasurface, Katerina Stojanoska

Theses and Dissertations

It has been demonstrated that metasurfaces with spatially asymmetric inner geometry exhibit unidirectional scattering effects, which can be used to control waves in a directional fashion. In this thesis, a planar Non-Hermitian elastic metasurface exhibiting unidirectional focusing of flexural waves is proposed. Asymmetrically loaded piezoelectric disks and metallic blocks comprise the unit cells. By using a negative capacitance shunting, a tunable material loss is embedded into the system. With suitable engineering of the induced loss profile, resonating building blocks are designed, which are capable of independently accessing unidirectional zero reflection. A planar metasurface is then created so that constructive interference …


Investigation Of Adhesion, Deformation Mechanics, And Electrical Properties Of Ag/Sio2/Pdms Tri-Layers For Stretchable Electronic Applications, Rhandy Joe Paladines Sep 2022

Investigation Of Adhesion, Deformation Mechanics, And Electrical Properties Of Ag/Sio2/Pdms Tri-Layers For Stretchable Electronic Applications, Rhandy Joe Paladines

Theses and Dissertations

The motivation behind this research is to improve the interfacial layer bonding of metallic thin films to PDMS substrates with the aid of a buffer layer. The physical vapor deposition (PVD) technique of sputtering was used to deposit bilayer thin films of silver (Ag) and silicon dioxide (SiO2) on PDMS. Two chamber pressures were used in this work, 5 and 20 mTorr, to investigate the role of this parameter in determining the interfacial adhesion and the role in determining the resistance sensitivity. Studies of the surface energy and increased bonding strength for metallization are carried out. Surface characterization using atomic …


Experimental Characterization And Manufacture Of Polymer Nanocomposite Dielectric Coatings For High-Temperature Superconductor Applications, Jacob Ryan Mahon May 2022

Experimental Characterization And Manufacture Of Polymer Nanocomposite Dielectric Coatings For High-Temperature Superconductor Applications, Jacob Ryan Mahon

Theses and Dissertations

Increased implementation of high-temperature superconducting (HTS) power transmission has the potential to revolutionize the efficiency of electrical grids and help unlock a fully electric transportation infrastructure. Realizing the benefits of HTS systems has been impeded by a lack of available dielectric insulation materials that can 1) withstand the extreme cryogenic operating environment of superconductors and 2) demonstrate low temperature processing that is compatible with existing superconductor manufacturing methods. Solving this problem necessitates a high-performance dielectric material with multifunctional properties specifically suited for operation in HTS systems. A polyamide and silicon dioxide (PA/SiO2) nanocomposite material with exceptional thermal stability has been …


Flexible Planar Metamaterials With Tunable Poisson’S Ratios, Nicholas Pagliocca, Kazi Zahir Uddin, Ibnaj Anamika Anni, Chen Shen, George Youssef, Behrad Koohbor Feb 2022

Flexible Planar Metamaterials With Tunable Poisson’S Ratios, Nicholas Pagliocca, Kazi Zahir Uddin, Ibnaj Anamika Anni, Chen Shen, George Youssef, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

This research reports on the design, fabrication, and multiscale mechanical characterization of flexible, planar mechanical metamaterials with tailorable mechanical properties. The tunable mechanical behavior of the structures is realized through the introduction of orthogonal perforations with different geometric features. Various configurations of the perforations lead to a wide range of Poisson’s ratios (from −0.8 to 0.4), load-bearing properties, and energy absorption capacities. The correlations between the configuration of the perforations and the auxetic response of the structures are highlighted through computational and experimental characterizations performed at multiple length scales. It is demonstrated that the local in-plane rotation of the solid …


Optimization Of Load-Bearing And Impact Energy Absorption Capacities Of Honeycomb Structures By Density Gradation, Oyindamola Khadijat Rahman Jul 2021

Optimization Of Load-Bearing And Impact Energy Absorption Capacities Of Honeycomb Structures By Density Gradation, Oyindamola Khadijat Rahman

Theses and Dissertations

Density gradation has been analytically and experimentally proven to enhance the load-bearing and energy absorption efficiency of cellular solids. This research focuses on the analytical optimization (by virtual experiments) of polymeric honeycomb structures made from flexible thermoplastics to achieve density-graded structures with desired mechanical properties. The global stress-strain curves of single-density honeycomb structures are used as input to an analytical model that enables the characterization of the constitutive response of density-graded hexagonal honeycombs with discrete and continuous gradations and for various gradients. The stress-strain outputs are used to calculate the specific energy absorption, efficiency, and ideality metrics for all density-graded …


Discrete Element Modeling Of Hydrogel Extrusion, Rohit Boddu Feb 2021

Discrete Element Modeling Of Hydrogel Extrusion, Rohit Boddu

Theses and Dissertations

Hydrogels are widely used in extrusion bioprinting as bioinks. Understanding how the hydrogel microstructure affects the bioprinting process aids researchers in predicting the behavior of biological components. Current experimental tools are unable to measure internal forces and microstructure variations during the bioprinting process. In this work, discrete element modeling was used to study the internal interactions and the elastic deformation of the molecular chains within hydrogel networks during the extrusion process. Two-dimensional models of hydrogel extrusions were created in Particle Flow Code (PFC; Itasca Co., Minneapolis, MN). For our model's calibration, hydrogel compression testing was used in which a cluster …


Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel Jul 2019

Functional Porous Polydimethlysiloxane As Piezoresistive And Piezoelectric Materials, Taissa Rose Michel

Theses and Dissertations

In this paper, polydimethylsiloxane (PDMS), carbon nanotubes (CNTs), and zinc oxide (ZnO) were combined to create functionalized piezoresistive and piezoelectric sensors for pressure sensing and energy harvesting. Samples were foamed to show that the increased deformability of the foam sensors makes them suitable for a range of applications including dexterous robotics, tactile sensing, energy harvesting, and biosensing. Uniform dispersion of CNTs was achieved with chloroform as the solvent. Samples were foamed using chemical blowing and scaffolding but granulated sugar at 70% porosity resulted in foamed samples with the most consistent mechanical properties. Samples underwent tensile and compressive testing for their …


Perovskite Solar Cells Fabricated Via Scalable Dip Coating Methods, Joseph F. Iannello May 2018

Perovskite Solar Cells Fabricated Via Scalable Dip Coating Methods, Joseph F. Iannello

Theses and Dissertations

Perovskite solar cells present the possibility for less expensive electricity generation, through the use of low cost materials and fabrication methods relative to current silicon-based technology. Many current methods of fabricating thin film perovskite solar cells focus on spin-coating, which inherently lacks scalability due to particle conglomeration, poor uniformity over a larger area, and safety concerns. Dip-coating, an alternative to spin-coating, which is explored here addresses these issues which limit scalability. Each individual layer can be separately synthesized, deposited, and characterized, which leads towards scalability. Choosing only the best results from each independent layer allowed progress to the creation of …


Heterogeneous Anisotropy Index And Scaling In Multiphase Random Polycrystals, Muhammad Ridwan Murshed Dec 2017

Heterogeneous Anisotropy Index And Scaling In Multiphase Random Polycrystals, Muhammad Ridwan Murshed

Theses and Dissertations

Under consideration is the finite-size scaling of elastic properties in single and two-phase random polycrystals with individual grains belonging to any crystal class (from cubic to triclinic). These polycrystals are generated by Voronoi tessellations with varying grain sizes and volume fractions. By employing variational principles in elasticity, we introduce the notion of a 'Heterogeneous Anisotropy Index' and investigate its role in the scaling of elastic properties at finite mesoscales. The index turns out to be a function of 43 variables, 21 independent components for each phase and the volume fraction of either phase. Furthermore, the relationship between Heterogeneous Anisotropy Index …


Loss-Induced Enhanced Transmission In Anisotropic Density-Near-Zero Acoustic Metamaterials, Chen Shen, Yun Jing Nov 2016

Loss-Induced Enhanced Transmission In Anisotropic Density-Near-Zero Acoustic Metamaterials, Chen Shen, Yun Jing

Henry M. Rowan College of Engineering Faculty Scholarship

Anisotropic density-near-zero (ADNZ) acoustic metamaterials are investigated theoretically and numerically in this paper and are shown to exhibit extraordinary transmission enhancement when material loss is induced. The enhanced transmission is due to the enhanced propagating and evanescent wave modes inside the ADNZ medium thanks to the interplay of near-zero density, material loss, and high wave impedance matching in the propagation direction. The equi-frequency contour (EFC) is used to reveal whether the propagating wave mode is allowed in ADNZ metamaterials. Numerical simulations based on plate-type acoustic metamaterials with different material losses were performed to demonstrate collimation and subwavelength imaging enabled by …


Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed Aug 2016

Design Maps For Fracture Resistant Functionally Graded Materials, Muhammad Ridwan Murshed

Theses and Dissertations

The objective of this research is to generate design maps to identify functionally graded microstructures with enhanced fracture toughness. Several Functionally Graded Materials (FGMs) with an edge crack and membrane loading are considered and the resulting J-integral values are computed numerically using Finite Element Analysis. In order to capture the resulting stress fields accurately, Barsoum elements are used in the vicinity of the crack tip and the simulations are carried out for several crack lengths (a) and material contrasts (κ). The averages of the J-integral values are used to determine the normalized Stress Intensity Factors which are then benchmarked with …