Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Numerical Analysis Of A Roadway Piezoelectric Harvesting System, Abdul Rahman Badawi Dec 2020

Numerical Analysis Of A Roadway Piezoelectric Harvesting System, Abdul Rahman Badawi

Mechanical & Aerospace Engineering Theses & Dissertations

Highways, streets, bridges, and sidewalks with heavy traffic dissipate a considerable amount of waste mechanical energy every day. Piezoelectric energy harvesting devices are a very promising technology that can convert the waste mechanical energy to clean and renewable energy to enhance the sustainability of infrastructures. Research efforts in large-scale energy harvesting have led to the advancement of piezoelectric devices to the point that large-scale implementation is starting to become more feasible. The energy harvested by these devices can be used in many ways such as providing heating or cooling, melting ice, monitoring structural conditions in bridges and tunnels, and powering …


The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain Dec 2020

The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain

Mechanical & Aerospace Engineering Theses & Dissertations

Among many thermoplastics that are used in engineering, polyamide 6 (nylon 6) is an extremely versatile engineering thermoplastic. Nylon filled with glass fibers has higher mechanical strength and high wear resistance than general purpose nylon. 3D printed composites, based on fused filament modeling, typically suffer from poor bead-to-bead bonding and relatively high void content, limiting their mechanical properties

This thesis explores the effect of compaction pressure and temperature on improving the mechanical properties of 3D printed composites. Engineering moduli in the printing and transverse to printing direction, as well as ultimate strength were measured using the tensile testing with Digital …


Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn Oct 2020

Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn

Mechanical & Aerospace Engineering Theses & Dissertations

Commercial and private aircraft have a need for strong yet light materials in order to have the most ideal performance possible. This study looks at the use of thin-ply composite materials to improve the performance of aircraft structures by means of weight savings and/or strength increase when compared to laminates that are composed of exclusively standard-ply materials. In order to perform an investigation based solely on finite element analysis, validation efforts were performed using test data from open hole tension, open hole compression, notched tension, and notched compression specimens. Once the models were validated sufficiently, the same modeling practices were …


Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo Aug 2020

Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo

Mechanical & Aerospace Engineering Theses & Dissertations

With an ever-increasing demand for composites, more ways of manufacturing them are becoming popular and widely used. Stitching of dry fabrics is an efficient method for improving delamination resistance. Discontinuous fiber reinforced composites can be used as a lightweight alternative material for metals through a process of compression molding, which allows for complex shape manufacturing while offering structural grade mechanical properties.

This study demonstrates how the stitching of dry fabrics can be adapted to more complex surfaces. The consequences of stitching of curvilinear surfaces can result in defect formation. Therefore, to understand the physical formation of possible defects, experimental characterization …


Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders Apr 2020

Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders

Mechanical & Aerospace Engineering Theses & Dissertations

Repair and reinforcement of composite honeycomb structures is an area of concern as higher demands are being placed on high strength, lightweight structural materials, such as carbon fiber reinforced plastics and corresponding honeycomb structures. A common issue with these structures is when a delamination in the facesheet may form and spread, leading to a failure scenario. An investigation of adding a through thickness reinforcement (TTR) to these structures at the sample level that undergo four-point-bending, tension, and joining methods is conducted throughout this thesis. The embedding of pultruded carbon fiber rods is found to be an ideal addition to composite …


Compaction And Residual Stress Modeling In Composite Manufactured With Automated Fiber Placement, Von Clyde Jamora Apr 2020

Compaction And Residual Stress Modeling In Composite Manufactured With Automated Fiber Placement, Von Clyde Jamora

Mechanical & Aerospace Engineering Theses & Dissertations

Automated fiber placement is a state-of-the-art manufacturing process that allows for complex layup patterns and can quickly place, cut, and restart composite tows. However, with this type of manufacturing process layup defects are inevitable, and manufacturing defects propagate after curing. Process modeling is the considered approach for exploring the defect prediction. Two different but related works were conducted, which are the thermochemical and hyperelastic model and the residual deformation model. For the model before cooling, a hyperelastic model and a thermo-chemical were made to simulate the compaction and heat transfer. Temperature dependent properties that are a function of degree of …