Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha Oct 2023

Fabrication Of Smooth Sac305 Thin Films Via Magnetron Sputtering And Evaluations Of Microstructure, Creep, And Electrical Resistivity, Manish Ojha

Mechanical & Aerospace Engineering Theses & Dissertations

SAC305 (96.5%Sn-3%Ag-0.5%Cu) is the leading alternative to the traditional Sn-Pb solder eutectic alloy owing to its low melting temperature, better compatibility with other components, and excellent mechanical/structural properties. In the realm of modern electronics, where devices are increasingly miniaturized, the design and characterization of thin solder joints become paramount. The orientation and size of the grains within the solder can influence its ability to withstand mechanical stresses. However, research on SAC thin films remains sparse, and these films present unique challenges and characteristics compared to their bulk counterparts, influenced by factors like interfaces, stresses, thickness, microstructure, and the nature of …


Mechanical And Frictional Behavior Of Textured And Non-Textured Surfaces, Raghuram R. Santhapuram Dec 2020

Mechanical And Frictional Behavior Of Textured And Non-Textured Surfaces, Raghuram R. Santhapuram

Graduate Theses and Dissertations

Tribology is the study of surfaces where two objects are sliding against another. Significant energy is lost due to friction between the sliding surfaces. Therefore, developing or designing surfaces to minimize friction is critical for the durability and reliability of the mechanical components. Several researchers have identified that surface texturing at the nanoscale (nanotexture) would reduce the friction between the contacting surfaces. The nanotextured surfaces have several applications in microelectromechanical systems and nanoelectromechanical systems. This dissertation employs molecular dynamics simulations to investigate the frictional and mechanical response of nanotextured aluminum (Al) and Al/amorphous silicon (a-Si) composite surfaces.

This study determines …


Microstructural Characterization Of Shear Transformation Zones And Modeling Indentation Size Effect In Amorphous Polymers, Leila Malekmotiei Jun 2018

Microstructural Characterization Of Shear Transformation Zones And Modeling Indentation Size Effect In Amorphous Polymers, Leila Malekmotiei

LSU Doctoral Dissertations

The first aim of this work is developing a procedure for experimental and analytical characterization of nano-scale microstructures which mediate large scale deformation in amorphous polymers. Glassy polymers are extensively used as high impact resistant, low density, and clear materials in industries. Nevertheless, their response under severe loading conditions is yet to be appropriately unraveled. Due to the lack of long-range order in the microstructures of glassy solids, their plastic deformation is different from that in crystalline solids. Shear Transformation Zones (STZs) are believed to be the main plasticity carriers in amorphous solids and defined as the localized atomic or …


Effects Of Temperature, Orientation, Load Level And Indenter Shape On The Indentation Response Of Niti-Based Shape Memory Alloys, Peizhen Li Jan 2017

Effects Of Temperature, Orientation, Load Level And Indenter Shape On The Indentation Response Of Niti-Based Shape Memory Alloys, Peizhen Li

Theses and Dissertations--Mechanical Engineering

Owing the capability of recovering large deformations through reversible phase transformation, shape memory alloys (SMAs) are well-known for their unique behaviors such as shape memory effect (SME) and superelasticity (SE), which can also be characterized by instrumented indentation techniques. Nickel titanium (NiTi) SMAs have been extensively used for nano/micro-indentation studies and widely applied to biomedical and other elaborate medical devices.

In this study, indentation responses of NiTi, NiTiHf, NiTiHfPd and NiTiHfCu alloys were investigated using spherical and Berkovich indenters at room temperature. Spherical and Berkovich indentation hardness, modulus, and work/depth recoverable ratio of these NiTi-based alloys were revealed as a …


An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall Oct 2016

An Examination Of The Indentation Size Effect In Fcc Metals And Alloys From A Kinetics Based Perspective Using Nanoindentation, David Earl Stegall

Mechanical & Aerospace Engineering Theses & Dissertations

The indentation size effect (ISE) in metals is described as the rise in hardness with decreasing depth of indentation and contradicts conventional plasticity behavior. The goal of this dissertation is to further examine the fundamental dislocation mechanisms that may be contributing to the so-called indentation size effect. In this work, we examined several metals and alloys including 99.999% Aluminum (SFE ~200 mJ/m2), 99.95% Nickel (SFE ~125 mJ/m2), 99.95% Silver (SFE ~22 mJ/m2), and three alloys, alpha brass 70/30 (SFE >10 mJ/m2), 70/30 nickel copper (SFE ~100 mJ/ …


Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi Apr 2016

Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi

USF Tampa Graduate Theses and Dissertations

Nanostructured metallic multilayers (NMMs) are well-known for their high strength in smaller bilayer thicknesses. Six Al/Ti (NMM) with different individual layer thickness were tested for their mechanical hardness using a nanoindentation tool. Individual layer thicknesses were chosen carefully to cover the whole confined layer slip (CLS) model. Nano-hardness had a reverse relation with the square root of individual layer thickness and reached a steady state at ~ 5 nm bilayer thickness. Decreasing the layer bilayer thickness from ~ 104 nm to ~ 5 nm, improved the mechanical hardness up to ~ 101%. Residual stresses were measured using grazing incident X-ray …


Investigation Of Microstructural Alterations In M50 And 52100 Steel Using Nanoindentation, Kristin R. Paulson Oct 2014

Investigation Of Microstructural Alterations In M50 And 52100 Steel Using Nanoindentation, Kristin R. Paulson

Open Access Theses

Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 10 8 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were …


New Topics On Nanoindentation Of Polymers And Composite Materials, Ricardo Martinez-Hernandez Jan 2013

New Topics On Nanoindentation Of Polymers And Composite Materials, Ricardo Martinez-Hernandez

Open Access Theses & Dissertations

In this study, nanoindentation was used to determine Young's modulus of homogeneous plastic materials as well as inhomogeneous epoxy woven fabric composites using various indenters. In the first part, homogeneous PMMA and polycarbonate were characterized using conical and spherical indenters. The conventional approach of the inverse analysis was modified in order to account for effects obtained during spherical nanoindentation. The experimental results were verified using FEA analysis in ABAQUS. It was found that viscous effects were present in conical nanoindentations which led to an overestimation of contact stiffness. The second part, the response of carbon and glass fiber woven fabric …


Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong Dec 2012

Design, Fabrication, Testing Of Cnt Based Isfet And Characterization Of Nano/Bio Materials Using Afm, Zhuxin Dong

Graduate Theses and Dissertations

A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where …