Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Silver Microparticle And Submicron Wire - Polylactic Acid Composites For Additive Manufacturing, Jenna W. Robichaux Dec 2021

Silver Microparticle And Submicron Wire - Polylactic Acid Composites For Additive Manufacturing, Jenna W. Robichaux

University of New Orleans Theses and Dissertations

This thesis explores the incorporation of silver microparticle and submicron wire additives into thermoplastic filament feedstock for fused filament fabrication (FFF) to create multifunctional three-dimensional (3D) printable composites. The impact of silver microparticle and submicron wire additives on mechanical behavior along with antibacterial effect of the silver microparticle and submicron wire additives on printed objects were assessed.

Composite FFF filaments were fabricated by solution processing, granulation, and extrusion. Differential Scanning Calorimetry (DSC) was conducted to measure the glass transition and melting point temperatures of the composite filaments for 3D printing. The effect of the additive addition on the thermal properties …


Thermo-Fluid Characterizations Of The Powder-Bed Fusion Additive Manufacturing Processes Using Laser And Electron Beam, M Shafiqur Rahman Dec 2020

Thermo-Fluid Characterizations Of The Powder-Bed Fusion Additive Manufacturing Processes Using Laser And Electron Beam, M Shafiqur Rahman

University of New Orleans Theses and Dissertations

The powder-bed fusion (PBF) process is a subdivision of Additive Manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3-D) parts. Two of the most effective PBF processes are selective laser melting (SLM) and electron beam additive manufacturing (EBAM), which can fabricate full-density metallic parts in a layer-by-layer fashion. In this study, thermal behavior and melt-pool dynamics in the PBF process are investigated by developing 3-D multiphysics-based thermo-fluid models for both SLM and EBAM, containing Ti-6Al-4V alloy as a powder-bed material. The laser and electron beams are modeled …


Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris Aug 2019

Development Of Experimental And Finite Element Models To Show Size Effects In The Forming Of Thin Sheet Metals, Jeffrey D. Morris

University of New Orleans Theses and Dissertations

Abstract

An experimental method was developed that demonstrated the size effects in forming thin sheet metals, and a finite element model was developed to predict the effects demonstrated by the experiment. A universal testing machine (UTM) was used to form aluminum and copper of varying thicknesses (less than 1mm) into a hemispherical dome. A stereolithography additive manufacturing technology was used to fabricate the punch and die from a UV curing resin. There was agreement between the experimental and numerical models. The results showed that geometric size effects were significant for both materials, and these effects increased as the thickness of …


General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr Aug 2019

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood relation …


Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne Dec 2017

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne

University of New Orleans Theses and Dissertations

To evaluate potential uses for friction stir welding in additive manufacturing, two separate parts were fabricated, one of 2195-T84 and the other 2219-T87, utilizing fixed pin techniques and additive lap welds. The parts were cut into samples, artificially aged and subjected to Rockwell hardness (HRB), Vickers hardness, micrographic photography, and metallographic imaging on both pre- and post- heat treatment. Additionally, tensile testing was performed on the heat-treated samples. A comparisons of test results showed a minimal increase in the yield strength of the 2195-T84 samples compared to as-welded tensile results obtained from a previous project. The ultimate tensile strength was …


Design, Manufacture, And Structural Dynamic Analysis Of A Biomimetic Insect-Sized Wing For Micro Air Vehicles, Jose Enrique Rubio Dec 2017

Design, Manufacture, And Structural Dynamic Analysis Of A Biomimetic Insect-Sized Wing For Micro Air Vehicles, Jose Enrique Rubio

University of New Orleans Theses and Dissertations

The exceptional flying characteristics of airborne insects motivates the design of biomimetic wing structures that can exhibit a similar structural dynamic behavior. For this purpose, this investigation describes a method for both manufacturing a biomimetic insect-sized wing using the photolithography technique and analyzing its structural dynamic response. The geometry of a crane fly forewing (family Tipulidae) is acquired using a micro-computed tomography scanner. A computer-aided design model is generated from the measurements of the reconstructed scanned model of the insect wing to design the photomasks of the membrane and the venation network required for the photolithography procedure. A composite …


Analysis Of Variable Insensitive Friction Stir Welding Parameters, Robert L. Marrero Jr Aug 2017

Analysis Of Variable Insensitive Friction Stir Welding Parameters, Robert L. Marrero Jr

University of New Orleans Theses and Dissertations

Friction Stir Welding (FSW) was used to perform a Design of Experiment (DOE) to determine the welding parameters effects on yielding consistent mechanical properties across the length of the weld. The travel speed was varied across set forge force and RPM conditions, to find a dataset that will yield consistent mechanical properties independent of the travel speed. Six different welds were completed on two different aluminum panels, the advancing side being Aluminum alloy 2195-T8 at a thickness of .350”, with the retreating side being Aluminum alloy 2219-T851 with a gauge thickness of .360”. A Left-hand Right-hand self-reacting pin tool was …


Studies On Structure And Property Of Polymer-Based Nano-Composite Materials, Yun Zhai May 2013

Studies On Structure And Property Of Polymer-Based Nano-Composite Materials, Yun Zhai

University of New Orleans Theses and Dissertations

The mixing of polymers and nanoparticles makes it possible to give advantageous macroscopic material performance by tailoring the microstructure of composites. In this thesis, five combinations of nano inclusion and polymer matrix have been investigated.

The first type of composites is titanium dioxide/ polyaniline combination. The effects of 4 different doping-acids on the microstructure, morphology, thermal stability and thermoelectric properties were discussed, showing that the sample with HCl and sulfosalicylic dual acids gave a better thermoelectric property. The second combination is titanium dioxide/polystyrene composite. Avrami equation was used to investigate the crystallization process. The best fit of the mass derivative …


Correlation Of Shear Strength Between Longitudial And Transverse Specimens, Erasto A. Fernandez May 2012

Correlation Of Shear Strength Between Longitudial And Transverse Specimens, Erasto A. Fernandez

University of New Orleans Theses and Dissertations

In this thesis, new methods for shear strength are proposed and backed up through extensive experimentation, ABAQUS models and data analysis of Titanium welds of three different alloys. The results are compared with those obtained by using the procedure outlined by AWS B4 for calculating Shear Strength in the transverse and longitudinal directions; this equation is widely used by the American Welding Society (AWS) and all those in search of more efficient designs involving welding.

It is a well-documented issue that the equation provided by AWS yields a large discrepancy between the values for shear strength of longitudinal and transverse …