Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Mechanical Engineering

In-Situ X-Ray Imaging Of The Selective Laser Melting Process, Meelap M. Coday Jan 2020

In-Situ X-Ray Imaging Of The Selective Laser Melting Process, Meelap M. Coday

Masters Theses

"Fusion-based metal additive manufacturing (AM) has garnered much interest in recent decades. Despite the popularity of fusion-based AM technologies such as selective laser melting (SLM), there are still fundamental questions and uncertainties that need to be addressed. In this work, we focus on the understanding of the undercooling in the SLM process and the uncertainties induced by the laser beam size, power, and scan speed. First, we report the estimation of undercooling in the SLM process from the solidification rate measured by in-situ high-speed synchrotron x-ray imaging, based on the dendrite growth velocity model. The undercooling changes as a function …


On The Investigation Of Hot Tearing Behavior Of Continuous Cast Steel, Yanru Lu Jan 2020

On The Investigation Of Hot Tearing Behavior Of Continuous Cast Steel, Yanru Lu

Masters Theses

”Hot tearing has long been recognized as a major problem that plagues the development of the continuous casting process and results in low-quality products. Understanding of the mechanisms and the required conditions for the hot tearing formation is important for industries but has not been well-established yet. Thus, this research focuses on the hot tearing issue observed in continuous cast steel, by providing a summary of the current research progress and then introducing a new laboratory method to determine the thermo-mechanical properties relevant to hot tearing of different steel grades under different solidification conditions. In this method, an apparatus was …


Performance Evaluation Of Alsi10mg Fabricated By A Selective Laser Melting Process, David Michael Murphy Jan 2020

Performance Evaluation Of Alsi10mg Fabricated By A Selective Laser Melting Process, David Michael Murphy

Masters Theses

“Selective laser melting is becoming a widely used additive manufacturing technique that melts metal powder in a layer by layer process in order to build a desired part or geometry. Like many additive processes, selective laser melting allows for fabrication of parts with complex geometries. In order to fabricate a fully dense part there are a number of variables to take into account including: powder characteristics, laser parameters, and environmental parameters. Each of these variables can affect the microstructure and thus the mechanical performance of an additively manufactured part. In this work, the aluminum alloy AlSi10Mg was investigated. AlSi10Mg is …


The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Hope Mason Jan 2019

The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Hope Mason

Masters Theses

"Postprocessing is an important step in many manufacturing methods, but it is especially important for additive manufacturing. Researchers looking to improve the surface roughness of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) have determined that acetone smoothing not only achieves improved surface roughness but increases compressive strength as well. This could be very beneficial to lattice structures, which are known for already having an excellent strength to weight ratio. If the compressive strength of ABS lattice structures could be improved even further using acetone smoothing, it could expand the applications for plastic lattice structures and improve …


Build Strategy Investigation Of Ti-6al-4v Produced Via A Hybrid Additive Manufacturing Process, Lei Yan Jan 2019

Build Strategy Investigation Of Ti-6al-4v Produced Via A Hybrid Additive Manufacturing Process, Lei Yan

Doctoral Dissertations

“Till now, laser metal deposition (LMD) has been developed with the capability of near-net shape high-performance metal parts fabrication, especially complicated titanium alloys, nickel alloys, and aluminum alloys. However, LMD processed parts usually do not meet end-use requirements without post treatments. In-process part quality inspection and inner features machining are impossible within a single LMD process. Hybrid additive manufacturing (HAM), which integrates additive and subtractive manufacturing in one process, has been proposed to increase the feasibility of complex parts fabrication. This dissertation aims to improve the applications of Ti-6Al-4V parts fabricated via a HAM technique. The first research topic is …


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang Jan 2019

Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang

Doctoral Dissertations

"Critical metallic components such as jet engine turbine blades and casting die/mold may be damaged after servicing for a period at harsh working environments such as elevated temperature and pressure, impact with foreign objects, wear, corrosion, and fatigue. Additive manufacturing has a promising application for the refurbishment of such high-costly parts by depositing materials at the damaged zone to restore the nominal geometry. However, several issues such as pre-processing of worn parts to assure the repairability, reconstructing the repair volume to generate a repair tool path for material deposition, and inspection of repaired parts are challenging. The current research aims …


Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer Jan 2019

Characterization Of The Surface Condition In Aa6061 Resulting From Deep Rolling As A Function Of Common Industrial Parameters, Andrew Kenneth Layer

Masters Theses

"Roller burnishing is widely used in industry to improve the surface finish and fatigue life of components. As weight reduction continues to grow in the automotive and transportation industries, deep rolling can help maintain product performance by mitigating the increase in component stresses resulting from lower weight systems. Deep rolling parameters such as tool, applied angle, feed rate, spindle speeds, and relative tool direction all affect cycle time, product performance, and appearance. The effects of common industrial parameters on the resultant surface roughness and residual stress profiles were studied in this investigation. The samples were manufactured on a CNC lathe …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …


Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal Jan 2018

Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal

Doctoral Dissertations

"Polyurethane (PU) foams are widely used as insulation materials due to their high insulation properties and low cost compared to conventional materials such as styrene and mineral wool. PU foams are traditionally fabricated with petroleum-based precursors. However, high crude price and higher carbon footprint has lead interest of researchers to synthesis PU foams using plant-based raw materials, that are inexpensive and renewable. In this dissertation, PU foams were fabricated using soy-based polyol and its thermal and mechanical properties were investigated. In the first part, of PU foam samples with different formulations were fabricated using soy-based polyol HB230, and varying amounts …


Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou Jan 2018

Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou

Doctoral Dissertations

"The transport and interfacial phenomena in laser melting and crystallization of silicon in micro-/nano-scale confinement lacks sufficient understanding. Uncovering the underlying mechanisms, and hence harness the melting and crystallization processes can help the formation of controllable single-crystal structures or patterns. In this dissertation, a molecular dynamics (MD) simulation was conducted to calculate the interfacial free energy of the silicon system in contact with flat and structured walls. Then the calculated interfacial energies were employed to predict the nucleation mechanisms in a slab of liquid silicon confined by two walls and compared with MD simulation results. Further, in combination with a …


Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi Jan 2018

Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi

Doctoral Dissertations

”Research presented in this dissertation is focused on developing and validating a computational framework for study of crack propagation in polycrystalline composite ceramics capable of designing micro-architectures of phases to improve fracture toughness and damage tolerance of ZrB2-based ultra-high temperature ceramics (UHTCs). A quantitative phase-field model based on the regularized formulation of Griffith’s theory is presented for crack propagation in homogenous and heterogeneous brittle materials. This model utilizes correction parameters in the total free energy functional and mechanical equilibrium equation within the crack diffusive area to ensure that the maximum stress in front of the crack tip is …


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids …


Optimal Design And Freeform Extrusion Fabrication Of Functionally Gradient Smart Parts, Amir Ghazanfari Jan 2017

Optimal Design And Freeform Extrusion Fabrication Of Functionally Gradient Smart Parts, Amir Ghazanfari

Doctoral Dissertations

"An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density was developed. In this process, an aqueous paste of ceramic particles with a very low binder content (<1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Sample parts made of alumina and fully stabilized zirconia were produced using this process and their mechanical properties including density, strength, Young's modulus, Weibull modulus, toughness, and hardness were examined. Microstructural evaluation was also performed to measure the grain size, and critical flaw sizes were obtained. The results indicate that the proposed method enables fabrication of geometrically complex parts with superior mechanical properties. Furthermore, several methods were developed to increase the productivity of the CODE process and enable manufacturing of functionally graded materials with an optimum distribution of material composition. As an application of the CODE process, advanced ceramic components with embedded sapphire optical fiber sensors were fabricated and properties of parts and sensors were evaluated using standard test methods"--Abstract, page iv.


Cathodic Protection Measurement Through Inline Inspection Technology Uses And Observations, Briana Ley Ferguson Jan 2017

Cathodic Protection Measurement Through Inline Inspection Technology Uses And Observations, Briana Ley Ferguson

Masters Theses

"This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit …


Processing, Microstructure, And Mechanical Properties Of Zirconium Diboride-Molybdenum Disilicide Ceramics And Dual Composite Architectures, Ryan Joseph Grohsmeyer Jan 2017

Processing, Microstructure, And Mechanical Properties Of Zirconium Diboride-Molybdenum Disilicide Ceramics And Dual Composite Architectures, Ryan Joseph Grohsmeyer

Doctoral Dissertations

"This research had two objectives: characterization of processing-microstructure-mechanical property relationships of conventional ZrB2-MoSi2 ceramics at room temperature (RT) and 1500⁰C in air, and fabrication of ZrB2-MoSi2 dual composite architectures (DCAs) for use near 1500⁰C. Elastic moduli, fracture toughness, and flexure strength were measured at RT and 1500⁰C for 15 ZrB2-MoSi2 ceramics hot pressed using fine, medium, or coarse ZrB2 starting powder with 5-70 vol.% MoSi2, referred to as FX, MX, and CX respectively where X is the nominal MoSi2 content. MoSi2 decomposed during sintering, resulting in …


Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky Jan 2016

Hybrid Manufacturing Processes For Fusion Welding And Friction Stir Welding Of Aerospace Grade Aluminum Alloys, Megan Alexandra Gegesky

Masters Theses

"Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction …


Modeling And Evaluation Of Moisture Diffusion In Polymer Composite Materials, Zhen Huo Jan 2016

Modeling And Evaluation Of Moisture Diffusion In Polymer Composite Materials, Zhen Huo

Doctoral Dissertations

"Fiber-reinforced polymer composites have extensive applications due to their high specific strength, improved product performance, low maintenance and design flexibility. However, moisture absorbed by polymer composites during the service life plays a detrimental role in both the integrity and durability of composite structure. It is essential to understand the moisture diffusion behavior and induced damage in polymer matrix composites under varying hygrothermal conditions. In Part I, the moisture diffusion characteristics in hybrid composites using moisture concentration-dependent diffusion method have been investigated. Also, a multi-stage diffusion model was proposed to explain the deviation of moisture diffusion behavior for sandwich composites from …


Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan Jan 2016

Synthesis And Photonic Sintering Of Bioresorbable Zinc Nanoparticle Ink For Transient Electronics Manufacturing, Bikram K. Mahajan

Masters Theses

"Zinc is an essential 'trace element' that supports immune systems, and is required for DNA synthesis, cell division, and protein synthesis. Zinc nanoparticles (Zn NP) has antibacterial properties and potential to be used in biodegradable printed electronics devices. The research presented here is about the synthesis of Zn NP and their potential use in transient electronics devices. In Paper 1, a technique of room temperature synthesis of Zn NP is reported using ball milling. Controlled amount of PVP was mixed in the solvent to stabilize the Zn particles and minimize cold welding during milling. The size of the produced Zn …


Laser Surface And Sub-Surface Repair During Metal Additive Manufacturing, Prudvi Teja Ravi Jan 2015

Laser Surface And Sub-Surface Repair During Metal Additive Manufacturing, Prudvi Teja Ravi

Masters Theses

"This study examines the use of laser surface treatment to repair surface and subsurface defects. Numerical analysis was performed on laser surface melting using Gaussian heat distribution equations to analyze the depth of the melt pool created by the phenomena. Concurrently, a process map was developed with a planned set of experiments by varying the ranges of laser power and travel speed to determine the dimensions of the melt pool across the gamut. The data generated from both the process studies and the numerical analysis was then used to determine the ideal operating ranges of the process parameters to repair …