Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Mechanical Engineering

Fabrication Of Solar Absorber Tube With Internal Fin Structure With In718 And Effect Of Boron With In718 For Solar Absorber Tube Using Selective Laser Melting 3d Printing Technology, Naznin Nuria Afrin Dec 2022

Fabrication Of Solar Absorber Tube With Internal Fin Structure With In718 And Effect Of Boron With In718 For Solar Absorber Tube Using Selective Laser Melting 3d Printing Technology, Naznin Nuria Afrin

Theses and Dissertations

This research aimed to fabricate Solar Absorber Tubes for Solar-Thermal Power Plant with internal fin structures using Selective Laser Melting (SLM) technology. In this study, we investigated the effect of B with IN718 in 3D printing using SLM for solar absorber tubes. The objective was to study the material-process-properties relationship with goal to identify and validate the optimal parameters for the SLM process. Material selected for this study was IN718 with 0.5% and 1% B particle mixed using a V-shape mixing machine. The flowability test was conducted using the Angle of Repose (AOR) method. 3D printed samples …


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya Mar 2022

Investigation Of Additively Manufactured Molybdenum-Tungsten-Rhenium Alloys, Randolph T. Abaya

Theses and Dissertations

The process of creating metal components through additive manufacturing is changing the way different industries can avoid the shortcomings of traditional metal production. Metals such as tungsten, molybdenum, and rhenium have many advantages for different applications, especially when alloyed together. In this study, an additively manufactured alloy containing 70% molybdenum, 25% tungsten, and 5% rhenium (70Mo-25W-5Re) is tested for its strength, ductility, hardness, and porosity. The 70Mo-25W-5Re alloy is printed through Laser Powder Bed Fusion (LPBF) under different conditions such as printing speed and printing atmosphere. Additionally, the effects of post printing heat treatment are conducted to understand the advantages …


Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen Mar 2022

Effects Of A Nitrogen And Hydrogen Build Atmosphere On The Properties Of Additively Manufactured Tungsten, Dana C. Madsen

Theses and Dissertations

Additively manufactured tungsten was printed in pure nitrogen, nitrogen-2.5% hydrogen, and nitrogen-5% hydrogen atmospheres as part of a 2^3 full factorial designed experiment and subjected to room temperature and high-temperature three-point-bend testing, chemical analysis, hardness testing, and microstructural imaging techniques. The pure nitrogen specimens exhibited the highest strength and ductility at both high temperature and room temperature. Chemical analysis showed a 2-8x reduction in compositional oxygen relative to unprocessed powder. Hardness values for all samples was between 306.8 and 361.5 HV1. It is proposed that adding hydrogen into the build atmosphere reduced the available energy density for tungsten melting by …


Molecular Dynamics Study Of Atomic Diffusion In Cantor High Entropy Alloy In The Selective Laser Melting Process, Mathew Z. Farias Dec 2021

Molecular Dynamics Study Of Atomic Diffusion In Cantor High Entropy Alloy In The Selective Laser Melting Process, Mathew Z. Farias

Theses and Dissertations

High entropy alloys (HEAs) are compositionally complex alloys that are comprised of 5 or more principle elements at near equimolar concentrations. The Selective Laser Melting (SLM) method generally melts pure elemental powders or prefabricated alloy powders, this process allows for the production of heterogeneous structures that would be difficult to create through more conventional means. In-situ alloying in SLM, or Laser Additive Alloying (LAA), using pure elemental powders is a promising means of producing what would otherwise be costly and difficult to fabricate products with less defects using prefabricated powders, therefore this new approach could enable the ability to …


Selective Laser Melting Of Titanium Diboride: A Study Of The Energy Density Effects, Lazaro Lopez Mendez Dec 2021

Selective Laser Melting Of Titanium Diboride: A Study Of The Energy Density Effects, Lazaro Lopez Mendez

Theses and Dissertations

Natural titanium diboride (TiB2) has been reported the 5th hardest material on earth. Due to its superior properties, such as high density, high elastic modulus, and high compressive strength, TiB2 becomes one of the most suitable ceramic reinforcements for applications with severe friction and heavy loading conditions. This study is intended to produce TiB2 using 3D additive manufacture (AM) technology, and then to understand the tribological property of the AM fabricated TiB2 specimens. In this study, a laser additive alloying (LAA) process was developed based on a Renishaw AM laser system. One mm thick samples were prepared using the LAA …


Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar Aug 2021

Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar

Theses and Dissertations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various hatch strategies and energy densities on the microstructures and other materials properties. 3D samples of CuCrFeNiTiAl alloy were fabricated under different energy densities and with different scan vector lengths. The as-built samples were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that face centered cubic, and body centered …


Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li Jan 2021

Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various process conditions in SLM, such as laser power, point distance and laser exposure time, on the microstructures formed. The as-built samples under high, medium and low energy densities were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that five major crystal structure phases (hexagonal, monoclinic, orthorhombic, body-centered cubic …


Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman May 2020

Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman

University Scholar Projects

Selective laser sintering (SLS) is an additive manufacturing technique that involves using a laser to fuse powdered material together, layer by layer, in order to create a 3-D product. Despite its numerous benefits over traditional methods of manufacturing, including higher efficiency, versatility, and the ability to process many materials, selective laser sintering suffers from its propensity to generate structural errors during operation.

Feedback control has been shown to improve fabrication quality in other laser-based additive manufacturing techniques when implemented properly. Widespread exploration of applying feedback control in SLS might lead to significant performance improvements in this form of manufacturing.

This …


Selective Laser Melting 17-4 Ph Stainless Steel And The Effect Of Varied Thermal Treatments On Fatigue Behavior., Sean Daniel Dobson May 2020

Selective Laser Melting 17-4 Ph Stainless Steel And The Effect Of Varied Thermal Treatments On Fatigue Behavior., Sean Daniel Dobson

Electronic Theses and Dissertations

Fatigue failure is the leading source of loss in industry. In order for new means of manufacturing to move towards mainstream use a complete understanding of material and mechanical behavior must be gained. This endeavor seeks to aide in that task by observing the fatigue behavior of selective laser melting (SLM) additive manufacturing (AM) specimens and the effect of differing thermal treatment conditions for an optimized AM process. Stainless steel 17-4 PH specimens were fabricated using SLM AM and thermally treated to three conditions: as-built, solutionized and hardened, and direct hardened. These specimens were characterized for material (powder quality, density, …


Evaluation Of Tensile Properties For Selective Laser Melted 316l Stainless Steel And The Influence Of Inherent Process Features, Paul Swartz Jun 2019

Evaluation Of Tensile Properties For Selective Laser Melted 316l Stainless Steel And The Influence Of Inherent Process Features, Paul Swartz

Master's Theses

Optimal print parameters for additively manufacturing 316L stainless steel using selective laser melting (SLM) at Cal Poly had previously been identified. In order to further support the viability of the current settings, tensile material characteristics were needed. Furthermore, reliable performance of the as-printed material had to be demonstrated. Any influence on the static performance of parts in the as-printed condition inherent to the SLM manufacturing process itself needed to be identified. Tensile testing was conducted to determine the properties of material in the as-printed condition. So as to have confidence in the experimental results, other investigations were also conducted to …


Microstructure And Mechanical Properties Of Selective Laser Melted Superalloy Inconel 625., Md Ashabul Anam Aug 2018

Microstructure And Mechanical Properties Of Selective Laser Melted Superalloy Inconel 625., Md Ashabul Anam

Electronic Theses and Dissertations

Selective Laser Melting (SLM), a powder based Additive Manufacturing (AM) process, has gained considerable attention in the aerospace, biomedical and automotive industries due to its many potential benefits, such as, capability of fabricating complex three-dimensional components, shortened design to product time, reduction in process steps, component mass reduction and material flexibility. This process uses metallic powder and is capable of fabricating complex structures with excellent microstructure which make SLM not only an improvement over other manufacturing processes but also innovative material processing technology. Inconel 625, a nickel-based super alloy is widely popular in aerospace, chemical and nuclear industries. This alloy …


Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy Apr 2018

Modeling Residual Stress Development In Hybrid Processing By Additive Manufacturing And Laser Shock Peening, Guru Charan Reddy Madireddy

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The term “hybrid” has been widely applied to many areas of manufacturing. Naturally, that term has found a home in additive manufacturing as well. Hybrid additive manufacturing or hybrid-AM has been used to describe multi-material printing, combined machines (e.g., deposition printing and milling machine center), and combined processes (e.g., printing and interlayer laser re-melting). The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing paradigm. This work focuses on hybrid-AM processes, which are defined as the use of additive manufacturing (AM) with one …


Modeling Of Selective Laser Sintering/ Selective Laser Melting, Xuan Wang, Connor West Jan 2017

Modeling Of Selective Laser Sintering/ Selective Laser Melting, Xuan Wang, Connor West

Industrial and Manufacturing Engineering

Selective laser sintering and selective laser melting are powder based additive manufacturing (AM) process that can rapidly manufacture parts with comparable mechanical properties to conventional manufacturing methods directly from digital files. However, the processing recipe development and design optimization of AM parts are often based on trial and error which erodes the benefit of AM. Modeling is a powerful tool to enable faster development cycle by significantly reducing the experimental efforts. In this paper we discussed the current status of selective laser sintering/melting modeling, in which the laser and powder interaction was studied to understand and predict the process and …


Revolutionized Additive Manufacturing, Matthew Walker, Winthrop Townsend, Luca Fuller Dec 2016

Revolutionized Additive Manufacturing, Matthew Walker, Winthrop Townsend, Luca Fuller

Mechanical Engineering

No abstract provided.


Study Of Selective Laser Remelting Of 316l S.S. To Reduce Roughness On Inclined Surface, Jafar Ghorbani Dec 2016

Study Of Selective Laser Remelting Of 316l S.S. To Reduce Roughness On Inclined Surface, Jafar Ghorbani

Theses and Dissertations

Additive manufacturing (AM) technologies are increasingly competing with subtractive methods, and there are promising applications for additive technologies that are hybrid with traditional manufacturing methods. Poor surface roughness of additive manufactured parts continues to be a major challenge especially for advanced functional parts. In this study, effect of processing parameters are evaluated, optimized and verified by using the Box–Behnken design of experiment method. The results, for the first time, reveal that surface remelting has the potential to become a high speed approach for improving the roughness of non-horizontal surface of additive manufactured parts.


Investigation Of Slective Laser Melting Of Mecanically Alloyed Metastable Al5fe2 Powder, Hugo Montiel Aug 2015

Investigation Of Slective Laser Melting Of Mecanically Alloyed Metastable Al5fe2 Powder, Hugo Montiel

Theses and Dissertations - UTB/UTPA

Selective Laser Melting (SLM), an Additive Manufacturing (AM) technology, enables the production of complex structured metal products. Aluminum alloys are used in SLM as high-strength lightweight materials for weight reduction in structural components. Previous investigations report high laser powers (300 W) and slow scanning speeds (500 mm/s) to process aluminum alloys under SLM. This research investigates the SLM processing of Al-Fe alloy by utilizing metastable Al5Fe2 powder system produced by mechanical alloying. Metastable systems are thermodynamically activated with internal energy that can generate an energy shortcut when processing under SLM. The optimum laser power, scan speeds and scan distances were …