Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan Nov 2022

Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan

Nanoscience and Microsystems ETDs

Metal additive manufacturing (AM) is a disruptive technology enabling the fabrication of complex and near-net-shaped parts by adding material layer-wise. It offers reduced lead production time. AM processes are finding applications in many industrial sectors such as aerospace, automotive, biomedical, and mold tooling. Despite the tremendous advantages of AM, some challenges still prevent this technology's adoption in high-standard applications. Anisotropy and inhomogeneity in the mechanical properties of the as-built parts and the existence of pores and lack-of-fusion defects are considered the main issues in directed energy deposition (L-DED) parts. Laser-engineered net shaping LENS® offers excellent possibilities to fabricate metal tools …


Influence Of Input Energy On Mechanical Properties Of Laser Powder Bed Fused Aisi 304l Stainless Steel, Tan Pan Jan 2020

Influence Of Input Energy On Mechanical Properties Of Laser Powder Bed Fused Aisi 304l Stainless Steel, Tan Pan

Masters Theses

“Powder Bed Fusion process with selective laser melting technique is popularly adopted in additive manufacturing area on account of its layer by layer manufacturing fashion capable of fabricating components with complex internal and external geometries and structures. However, the process-property map is unique and vital for different materials and AM configurations used for fabrication. The process parameter is identified as a significant factor that heavily influences the properties and performances of the printed materials.

Current work aimed to extend the existing knowledge on Laser Powder Bed Fusion fabricated AISI 304L by accessing the influence of varying energy input on the …


Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou Aug 2018

Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functionally graded materials (FGMs) have attracted a lot of research interest due to their gradual variation in material properties that result from the non-homogeneous composition or structure. Metal FGMs have been widely researched in recent years, and additive manufacturing has become one of the most important approaches to fabricate metal FGMs. The aim of this paper is to review the research progress in metal FGMs by additive manufacturing. It will first introduce the unique properties and the advantages of FGMs. Then, typical recent findings in research and development of two major types of metal additive manufacturing methods, namely laser metal …


Additive Manufacturing Of High Entropy Alloys -- A Review, Wenyuan Cui, Xinchang Zhang, Frank W. Liou Aug 2017

Additive Manufacturing Of High Entropy Alloys -- A Review, Wenyuan Cui, Xinchang Zhang, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High-entropy alloys have attracted increasingly interest due to their unique compositions, microstructures and mechanical properties. Additive manufacturing has been recognized as a promising technology to fabricate the high-entropy alloys in the recent years. The purpose of this paper is to review the current research progress in high-entropy alloys by additive manufacturing process. It will first highlight the important theory of the high-entropy alloys. The next aspect is to summarize current additive manufacturing methods applied for the high entropy alloys. At last, the correlation between the microstructures and the mechanical properties of the high-entropy alloys will be examined and discussed.


Laser Assisted Manufacturing: A Comparison Of Mechanical Properties Between Lam And Conventional Manufacturing Techniques, William Blakeslee, Neil S. Bailey, Kyung-Min Hong, Shunyu Liu, Yung C. Shin Aug 2016

Laser Assisted Manufacturing: A Comparison Of Mechanical Properties Between Lam And Conventional Manufacturing Techniques, William Blakeslee, Neil S. Bailey, Kyung-Min Hong, Shunyu Liu, Yung C. Shin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser assisted manufacturing methods, such as direct metal deposition (DMD) and laser beam welding (LBW), are promising methods because of their higher precision and greater productivity when compared to traditional manufacturing methods. Because these methods are relatively new, the mechanical properties of samples produced by laser assisted manufacturing are not well understood. In this study the mechanical properties of samples produced by laser assisted manufacturing methods are analyzed and compared with data obtained from traditional manufacturing methods. The DMD process used Fe-TiC and Ti-TiC metal matrix composites, while LBW used AISI 304 stainless steel. The results vary widely with the …


Mechanical Properties And Microstructure Evolution Of 17-4 Ph Stainless Steel Processed By Laser-Powered Bed Fusion., Harish Irrinki May 2016

Mechanical Properties And Microstructure Evolution Of 17-4 Ph Stainless Steel Processed By Laser-Powered Bed Fusion., Harish Irrinki

Electronic Theses and Dissertations

Laser powder bed fusion (L-PBF) is a potential manufacturing route for the production of tooling using different steel materials. However, there is a limited understanding of how the mechanical properties and microstructures of the L-PBF produced parts vary with change in powder type and process conditions. The current research studied the influence of L-PBF process parameters on mechanical properties and microstructures of 17-4PH stainless steel using gas and water-atomized powders. The results demonstrate the feasibility of using water-atomized powders as starting raw materials instead of typically used gas-atomized powders to fabricate parts in the L-PBF process at high energy densities.


Mechanical Testing Of Fused Filament 3-D Printed Components For Distributed Manufacturing, Nagendra Gautam Tanikella Jan 2016

Mechanical Testing Of Fused Filament 3-D Printed Components For Distributed Manufacturing, Nagendra Gautam Tanikella

Dissertations, Master's Theses and Master's Reports

Fused filament fabrication (FFF)-based open-source 3-D printers offer the potential of decentralized manufacturing both in developing and developed countries. Unfortunately, a severe lack of data and standards relating to material properties and printed components limit this potential. This thesis first investigates the mechanical properties of a wide-range of FFF materials and provides a database of mechanical strength of the materials tested. The results demonstrate that the tensile strength of a 3-D printed specimen depends largely on the mass of the specimen, which provides a means to estimate the strength of 3-D printed components. Then this information is used to evaluate …


Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk Aug 2008

Microstructural Characterization Of Diode Laser Deposited Ti-6al-4v, Tian Fu, Zhiqiang Fan, Syamala R. Pulugurtha, Todd E. Sparks, Jianzhong Ruan, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Direct Metal Deposition (DMD) is an effective approach to manufacturing or repairing a range of metal components. The process is a layer-by-layer approach to building up a three dimensional solid object. The microstructure influences mechanical properties of the deposited parts. Thus, it is important to understand the microstructural features of diode laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate. laser deposited parts. This paper presents a microstructure analysis of a diode laser deposited Ti-6Al-4V onto a Ti-6Al-4V substrate.