Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Manufacturing

PDF

2024

Institution
Keyword
Publication
Publication Type

Articles 1 - 26 of 26

Full-Text Articles in Mechanical Engineering

Hitch Cart “Landing Gear”, Rebekah White, Jose Raygoza, Randy Hernandez, Brandon Leon Dec 2024

Hitch Cart “Landing Gear”, Rebekah White, Jose Raygoza, Randy Hernandez, Brandon Leon

Mechanical Engineering

This report aims to allow our sponsor, to review our design process of the Hitch Cart Landing Gear Prototype. In the design overview section of this report, we discuss the primary design modifications we made to the wheel mechanism of the existing hitch cart prototype, including the addition of the ACME screws and the folding brackets. This allows our sponsor to see the intended improvements made to the past prototype and understand the primary goal of our project. Then, in the implementation section, we cover the entire manufacturing process to allow our sponsor to understand what manufacturing steps must be …


Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Using Sustainable Technique To Recycle Waste Paper In Academic Institutions, Mustafa M. Mansour Jun 2024

Using Sustainable Technique To Recycle Waste Paper In Academic Institutions, Mustafa M. Mansour

Al-Bahir Journal for Engineering and Pure Sciences

It has been clearly demonstrated that it would be feasible to consider recycling paper in an academic institution. This can be achieved through combining specific waste paper baskets, a pulping machine and power supplied by a renewable energy source, with an already established local paper making company. The paper making company would be able to gain a subsidy from the government which pays them to actually recycle paper, to counteract the cost of the pulped paper which is 30% more expensive than raw wood pulp. The academic institution would save money on waste disposal and decrease its carbon footprint by …


Enhancing Miter Saw Safety: Challenges And Prospects Of Brake Incorporation With An Automatic Blade Retraction System, Derek S. Cole Jun 2024

Enhancing Miter Saw Safety: Challenges And Prospects Of Brake Incorporation With An Automatic Blade Retraction System, Derek S. Cole

University Honors Theses

Miter saws pose significant safety risks with thousands of injuries reported annually. Despite this risk, they are still used every day as they are a necessity for thousands of workers in the United States and globally. This leaves a demand to make these machines safer to mitigate any potential harm. This research addresses the critical need for an automatic safety system for miter saws, aiming to enhance user safety by retracting and stopping the blade upon skin contact. This analysis identified the primary challenge: The large force generated when braking at high speed on a miter saw blade, translates the …


Cam And Design For Manufacturing: Developing A Project-Based Learning Course, Stephen Pierson May 2024

Cam And Design For Manufacturing: Developing A Project-Based Learning Course, Stephen Pierson

Mechanical Engineering Undergraduate Honors Theses

To effectively serve student career success, mechanical engineering programs must teach students how to account for manufacturing considerations in design. Despite this, manufacturing education is a glaring area of need in current engineering curricula. In fact, basic manufacturing knowledge is one of the only hard skills consistently ranked as one of the greatest weaknesses of mechanical engineering hires in surveys of industrial employers over the last few decades. Without radically changing departmental curriculum to include more emphasis on design-build projects, one solution to combat this is to incubate a lab course in mechanical engineering programs in which undergraduates would practice …


Improved Ballistic Impact Resistance Of Nanofibrillar Cellulose Films With Discontinuous Fibrous Bouligand Architecture, Colby Caviness May 2024

Improved Ballistic Impact Resistance Of Nanofibrillar Cellulose Films With Discontinuous Fibrous Bouligand Architecture, Colby Caviness

All Theses

Natural protective materials offer unparalleled solutions for impact-resistant material designs that are simultaneously lightweight, strong, and tough. Particularly, the dactyl club of mantis shrimp features chitin nanofibrils organized in a Bouligand structure, which has been shown to effectively dissipate high-impact energy during powerful strikes. The mollusk shells also achieve excellent mechanical strength, toughness, and impact resistance with a staggered, layer-by-layer structure. Previous studies have shown that hybrid designs, by combining different bioinspired microstructures, can lead to enhanced mechanical strength and energy dissipation capabilities. Nevertheless, it remains unknown whether combining Bouligand and staggered structures in nanofibrillar cellulose (NFC) films, forming a …


E-Bike Improvements, Reuben M. Eye, Cole Huddleston, Jeffery Scott, Cade Lewis, Ethan Ridenour Apr 2024

E-Bike Improvements, Reuben M. Eye, Cole Huddleston, Jeffery Scott, Cade Lewis, Ethan Ridenour

ATU Research Symposium

No abstract provided.


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Key Elements, Mechanism Analysis And Evaluation Indicators Of Digital And Intelligent Integration Transformation And Development Of Manufacturing Industry, Xiaoqiang Sun, Xiuyun Gao, Yumei Wang Feb 2024

Key Elements, Mechanism Analysis And Evaluation Indicators Of Digital And Intelligent Integration Transformation And Development Of Manufacturing Industry, Xiaoqiang Sun, Xiuyun Gao, Yumei Wang

Bulletin of Chinese Academy of Sciences (Chinese Version)

The digital and intelligent integration transformation of manufacturing industry has become an important driving force for the high-quality development of traditional manufacturing enterprises. This study clarifies the main research context and key issues of scholars on the digital and intelligent integration transformation of manufacturing industry, refines the goals, main elements, and influencing factors of digital and intelligent integration transformation of manufacturing industry, builds a power network model for the transformation and development of digital and intelligent integration of manufacturing industry according to the system feedback principle of system dynamics, analyzes the mechanism of action between various elements of the system, …


Development Path And Policy Guarantee Of China's Advanced Manufacturing Industry Under Background Of Fourth Industrial Revolution, Chang Wang, Siyuan Zhou, Hongjun Geng Feb 2024

Development Path And Policy Guarantee Of China's Advanced Manufacturing Industry Under Background Of Fourth Industrial Revolution, Chang Wang, Siyuan Zhou, Hongjun Geng

Bulletin of Chinese Academy of Sciences (Chinese Version)

How to seize the opportunity window opened by the fourth industrial revolution and enhance the international competitive advantage of advanced manufacturing has become an important issue concerned by existing research and policy practitioners. This study analyzes the background, characteristics, and influence of the fourth industrial revolution on the development of advanced manufacturing industry. Based on this, it discusses the development status and problems of four types of advanced manufacturing industries, including digitally empowered new infrastructure industries, intelligent manufacturing high-end equipment industries, brand-oriented new consumption industries, and science-based industries. The development paths of “fusion innovation”, “intelligent manufacturing upgrade”, “quality improvement”, and …


Electric Vehicles Contribute To China's Energy Security And Carbon Peaking And Carbon Neutrality, Jianfeng Guo, Xuemei Zhang, Qi Cao, Fu Gu Feb 2024

Electric Vehicles Contribute To China's Energy Security And Carbon Peaking And Carbon Neutrality, Jianfeng Guo, Xuemei Zhang, Qi Cao, Fu Gu

Bulletin of Chinese Academy of Sciences (Chinese Version)

The current international situation is complicated and unstable, and China is in the midst of an important economic transition as it deals with the twin concerns of energy security and carbon peaking and carbon neutrality (referred to as dual carbon goals). Although the dual carbon goals aim a strong emphasis on energy security, certain emission reduction strategies will place restrictions on energy security that is directly connected, such as energy supply and grid load, making it challenging to simultaneously fulfill the optimization goal. China now has the task of figuring out how to rationalize and optimize the coordinated promotion of …


Liquid Nitrogen Shrink-Fitting Process, Natalie Harvey Jan 2024

Liquid Nitrogen Shrink-Fitting Process, Natalie Harvey

The Journal of Purdue Undergraduate Research

No abstract provided.


Optimum Design Of Metallic And Plastic Cylindrical Gears Using Naturally-Inspired Algorithms: A Review, Marah Elsiedy, Hesham Hegazi, Ahmed Elkassas, Abdelhameed Zayed Jan 2024

Optimum Design Of Metallic And Plastic Cylindrical Gears Using Naturally-Inspired Algorithms: A Review, Marah Elsiedy, Hesham Hegazi, Ahmed Elkassas, Abdelhameed Zayed

Journal of Engineering Research

Abstract- Nowadays, several machinery and vehicles utilize mechanical elements which transmit power ranges from low, middle, and high levels depending on the type of equipment needed. Gears are the most influential design elements on any process during the running of a specific application, moreover engineers tried to obtain the optimality of a gear design which is a more compact, reliable- long service with simply operating features by following a systematic calculation of the mathematical model from standards and handbooks, however this process doesn't give the optimal design of the gears. Optimization techniques have been added to the design process for …


Enhancing Bridge Resilience And Overheight Vehicle Mitigation Through Innovative Sacrificial Cushion Systems, Aly Mousaad Aly, Marc Hoffmann Jan 2024

Enhancing Bridge Resilience And Overheight Vehicle Mitigation Through Innovative Sacrificial Cushion Systems, Aly Mousaad Aly, Marc Hoffmann

Faculty Publications

Transportation departments have made significant strides in addressing the challenges posed by the increasing weights of trucks on bridges. While there is a growing awareness of overheight vehicle collisions with bridges, implementing effective countermeasures remains limited. The susceptibility of bridges to damage from such collisions is on the rise, further exacerbated by unpredictable lateral impact forces. This study employs nonlinear impact analysis to assess the response of an unprotected vehicle-girder model, yielding realistic deformation outcomes comparable to observed impacts on the US-61 bridge. Predictions for a truck traveling at 112.65 km/h indicate deformations of 0.229 m, 0.161 m, and 0.271 …


High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting, Jacob A. Belke Jan 2024

High Temperature Strength Reduces Soldering In Aluminum High Pressure Die Casting, Jacob A. Belke

Dissertations, Master's Theses and Master's Reports

Die soldering, an adhesion defect in high pressure die casting (HPDC), is a symptom of localized sticking where a localized portion of the cast material is adhered to the tooling surface causing build up over time. This requires the tooling to be serviced which incurs additional costs to the process that gets passed on to the parts. Historically, soldering has been mitigated using lubricants, coatings, and alloy chemistry modifications but solder persists.

The Tresca friction thermomechanical model suggests soldering occurs when the local interfacial shear stress between the casting and die surface exceeds the local shear strength of the casting. …


Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers Jan 2024

Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers

Theses and Dissertations--Chemical and Materials Engineering

Experimental process simulation and quantification of microstructure development during processing are challenging due to limitations with machinery temperature capability, inadequate resolution and sampling volume of currently available characterization techniques, and difficulty characterizing material microstructures as close to processing-relevant conditions as possible. This dissertation addresses how process simulation can be performed using Gleeble thermomechanical technologies and how microstructure development during these processing simulations can be quantified both in-situ and ex-situ.

The first portion of this dissertation demonstrates how Gleeble technologies can be applied to simulate complex material processing conditions in order to produce process-property profiles that can be used to inform …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Extending Trailer, Alex Grove Jan 2024

Extending Trailer, Alex Grove

Williams Honors College, Honors Research Projects

The goal of this research project is to revolutionize the convenience in towable transportation. This innovative design aims to enhance the versatility of pull-behind trailers by incorporating an extendable feature, allowing users to effortlessly adjust the length according to their specific needs. Whether navigating tight spaces or accommodating extra cargo, our trailer adapts to diverse situations, providing unmatched flexibility. In addition to its adjustable length, the trailer is engineered to be compactable, addressing the storage constraints often faced by users with limited space. The collapsible design ensures easy storage without compromising on functionality, making it an ideal solution for individuals …


Materials Testing For Large Format 3d Printing, William Jenkins Jan 2024

Materials Testing For Large Format 3d Printing, William Jenkins

Williams Honors College, Honors Research Projects

An ABS Carbon Fiber blend was printed into single walled hexagons at a variety of settings on a Cincinnati BAAM large format 3D printer. These hexagons were then cut down into sheets and had tensile and flexural test samples cut out of them, in order for materials testing to be performed. Tensile strength, tensile strain, young’s modulus, flexural strength, deflection and elastic modulus were all determined. A desktop CNC machine and a planer were purchased for the manufacturing of these samples, and an efficient cutting procedure was designed and optimized. After all data collection concluded, this data was thoroughly analyzed, …


Stanley Black And Decker Slag Removal Design Project, Colt Hemphill, Kyle Stober, Andrew Raymond, Robert Artrip Jan 2024

Stanley Black And Decker Slag Removal Design Project, Colt Hemphill, Kyle Stober, Andrew Raymond, Robert Artrip

Williams Honors College, Honors Research Projects

My group given the task of designing a system to remove the slag of large metal plates. Removing this slag is an important step in creating the final assembly of a model. Currently we the operators are flipping the plates using a large magnet and crane. The issue that we see with the current method is the risk of injury while having the plate suspended in the air. These plates can reach upwards of 600lbs and poses a serious threat to the operators if the magnet is not secured correctly. Our new system for removing the slag is designed to …


Yankee Feedstock Project, Nathan Mcanany, Richard Gualtiere Jan 2024

Yankee Feedstock Project, Nathan Mcanany, Richard Gualtiere

Williams Honors College, Honors Research Projects

This report details the design process, application, considerations, costs, and functionality of an automated tape “feedstock” machine. Yankee Insulation Products will use this project to create rolls of Aluminum foil tape that are included in their Therma-Dome assembly kit. The goal of this design will aid in the streamlining and effectiveness of the current process. When designing the automated process, the current process was evaluated for areas of improvement. Design parameters were also given to the project by the sponsoring company that were to be considered and incorporated.


Schaeffler E-Axle Value Engineering, Andrew Powers Jan 2024

Schaeffler E-Axle Value Engineering, Andrew Powers

Williams Honors College, Honors Research Projects

This project aims to design a manufacturable E-Axle end housing that improves system performance while reducing cost. The project is focused on utilizing Schaeffler's manufacturing competencies to achieve a simple assembly with a significant reduction in cost per part, while using existing machines or processes within the company. The design development process will follow the conceptual design stage through Finite Element Analysis and classical engineering calculations. Cross-functional design reviews will be conducted to ensure that agreement can be reached on the manufacturing feasibility of the design. Concepts will be entered in a decision analysis sheet to identify the best one …


Short Strand Carbon Fiber Reinforced Polylactic Acid Filament For Additive Manufacturing, Dale Chenoweth, Lukas Seggi, Luke Phillips Jan 2024

Short Strand Carbon Fiber Reinforced Polylactic Acid Filament For Additive Manufacturing, Dale Chenoweth, Lukas Seggi, Luke Phillips

Williams Honors College, Honors Research Projects

In this design project, the additive manufacturing filament of short strand carbon fiber (SSCF) reinforced polylactic acid (PLA) composite was developed. The micro-size, precision cut SSCFs were mixed with the PLA pellets through a melting homogenization process. Through this process the composite material block is cut and divided into pieces for ease of pelletizing. The material block pieces are then pelletized to be fed through the single screw extruder to develop the SSCF-PLA composite filament. The SSCF-PLA filaments were manufactured with a varying amount of SSCF ranging from 0.5% to 10% of the material block's weight. Development of a 1% …


Battery Dunnage, Paul Hirsch, Alex Cox, Ben Strubbe Jan 2024

Battery Dunnage, Paul Hirsch, Alex Cox, Ben Strubbe

Williams Honors College, Honors Research Projects

Schaeffler is launching a new assembly line for a battery in 2025. As part of the project, it is necessary to design and fabricate a reusable dunnage (packaging) specialized for the battery, meant for safe domestic transportation in the United States. Through an iterative process, the team developed a final dunnage design out of steel components that had a maximum footprint of 62 in X 43.5 in X 29.25 in and a weight of 821.682 lbs. The dunnage is stackable on itself up to two high, weighing a total of 4,918.724 lbs. when loaded with four batteries. The design was …


Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …