Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Mechanical Engineering

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu Sep 2023

Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Concentrated solar power (CSP) is a reliable renewable energy source that is progressively lowering its cost of energy. However, the heat loss due to reflected and emitted radiation hinders the maximum achievable thermal efficiency for solar receiver tubes on the solar tower. Current solar selective coatings cannot withstand the high temperatures that come with state-of-the-art CSP towers often needing to be recoated soon after initial operation. We intend to use Inconel 718 with different additive manufacturing (AM) practices to construct surfaces that allow for more light-trapping to occur. By adjusting printing parameters, we can tailor a surface to allow for …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi Jan 2023

Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

The employment of additive manufacturing in the non-standard environments like space, ships, or submarines has the potential to be an advanced utility not only in the pre-flight production of aerospace components and structures, but also for the onboard manufacturing of components and tools necessary for future space missions. For example, the ability to produce tools and structural components on the International Space Station can provide the space community the opportunity to make repairs and upgrades to the space station without wasting time and resources transporting such materials through additional missions. Additive manufacturing would allow for space missions to use on …


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda Sep 2022

Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Three-dimensional scanning is widely used for the dimension measurements of physical objects with freeform designs. The output point cloud is flexible enough to provide a detailed geometric description for these objects. However, geometric accuracy and precision are still debatable for this scanning process. Uncertainties are ubiquitous in geometric measurement due to many physical factors. One potential factor is the object’s posture in the scanning region. The posture of target positioning on the scanning platform could influence the normal of the scanning points, which could further affect the measurement variances. This paper first investigates the geometric and spatial factors that could …


Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava Sep 2022

Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Inconel 718 is considered difficult to machine because of its ability to maintain its properties at high temperatures. The low thermal conductivity of the alloy causes accelerated tool deterioration when machining. Selective laser melting (SLM) additive manufacturing introduces a possibility of eliminating these difficulties, and producing complex shapes with this difficult-to-machine material. However, high surface roughness and porosity usually occur at the surface of components produced through additive manufacturing. In this study, the surfaces of Inconel 718 samples produced through selective laser melting were treated using laser ablation. The process parameters for the laser ablation process were analyzed in …


Optimizing Build Plate Adhesion Of Polymers In Fused Granule Fabrication Processes, Alex Schroeder, Jason Weaver Aug 2022

Optimizing Build Plate Adhesion Of Polymers In Fused Granule Fabrication Processes, Alex Schroeder, Jason Weaver

Faculty Publications

Perhaps the most crucial element of fused granule fabrication (FGF) is material adhesion; in order to achieve a successful product, the material being printed must adhere to the build plate. For optimal products, the material should only adhere to the build plate until the print is complete, then be easily removable. This paper examines the effects of different build plates, environments, and bonding agents on material adhesion during the FGF process in a CNC mill machine. The force to remove polycarbonate (PC) and polypropylene (PP) from build plates was tested with various bonding agents. Except in one case, the adhesive …


A Comparison Of Layer Deposition And Open Molding Of Petg By Fused Pellet Fabrication In An Additive Manufacturing System, Alex Gibson, Jason Weaver Aug 2022

A Comparison Of Layer Deposition And Open Molding Of Petg By Fused Pellet Fabrication In An Additive Manufacturing System, Alex Gibson, Jason Weaver

Faculty Publications

Additive manufacturing continues to offer new possibilities in both production and economics. The industry has quickly adopted it to rapidly produce parts that would be difficult or cost preventative otherwise. Recent innovation has expanded its capabilities, however there are still significant limitations. Most AM processes are restricted by materials available, in producing large parts, or by not achieving material deposition speeds to make certain products feasible. In addition, tight tolerances for features and surfaces cannot be produced without substantial post processing. High-speed Fused Pellet Fabrication (FPF) in combination with Hybrid Manufacturing (HM) offers expanded capabilities as additive and subtractive process …


Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz Mar 2022

Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

Structural optimization is a methodology used to generate novel structures within a design space by finding a maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural optimization, is often used as a means for light-weighting a structure while maintaining mechanical performance. This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodologies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice designs were used: the Diamond, I-WP, and Primitive cells. These …


Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen Feb 2022

Effects Of Particle Size Distribution With Efficient Packing On Powder Flowability And Selective Laser Melting Process, Zachary Young, Minglei Qu, Meelap Michael Coday, Qilin Guo, Seyed Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by …


Closed Loop Recycling Of Low Friction Polymers In Fused Granule Fabrication Additive Manufacturing Processes, Neil Thompson, Jason Weaver Jan 2022

Closed Loop Recycling Of Low Friction Polymers In Fused Granule Fabrication Additive Manufacturing Processes, Neil Thompson, Jason Weaver

Faculty Publications

Plastic waste is a critical worldwide problem that impacts additive manufacturing (AM). Extensive research has explored how plastic waste in AM can be reduced by recycling prints into new filament, with varying success. An alternative to filament-based extrusion is “fused granule fabrication” (FGF), which extrudes from pellets or granules. This method is often used for large area additive manufacturing (LAAM) of polymers. This paper expands upon the knowledge base from previous research on LAAM and examines the extent to which PETG can be recycled and reprinted through the same FGF tool without significant loss to its material properties. The metric …


Experimental Investigation Of Additive Manufacturing Of Continuous Carbon Fiber Composites With Multifunctional Electro-Tensile Properties, Ritesh Ghimire, Frank W. Liou Nov 2021

Experimental Investigation Of Additive Manufacturing Of Continuous Carbon Fiber Composites With Multifunctional Electro-Tensile Properties, Ritesh Ghimire, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Manufacturing processes for monofunctional and multifunctional materials vary depending on the design optimization. Multifunctional continuous carbon fiber composites provide great potential in achieving coupled structural and electrical properties for their applications in aircraft, unmanned aircraft systems, and spacecraft. Proper optimization of tensile and electrical properties offers benefits early in the design and continuous operational safety phases to obtain coupled multifunctional properties. In this paper, fused filament fabrication additive manufacturing (AM) technique was used to fabricate continuous carbon fiber solid laminated composites test coupons. The proposed new method characterizes the electrical conductivity's coupled effects on the tensile properties, including the failure …


Additive Manufacturing Of Stainless Steel -- Copper Functionally Graded Materials Via Inconel 718 Interlayer, Xinchang Zhang, Lan Li, Frank W. Liou Nov 2021

Additive Manufacturing Of Stainless Steel -- Copper Functionally Graded Materials Via Inconel 718 Interlayer, Xinchang Zhang, Lan Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The joining of dissimilar materials is becoming increasingly prevalent to integrate different material properties to enhance design flexibility and overall performance. This study introduced an innovative approach to additively manufacture copper on 316L stainless steel (SS316L) via Inconel 718 interlayers using directed energy deposition (DED). The novel multi-material structure was studied both experimentally and theoretically. The microstructure, tensile properties, microhardness, and thermal performance of the structure were characterized. Residual stress distribution over the structure was revealed by experimental-validated numerical modeling. The result exhibits that defect-free structures with excellent interfacial bonding can be achieved by introducing Inconel 718 interlayers. The bonding …


A Novel Laser-Aided Machining And Polishing Process For Additive Manufacturing Materials With Multiple Endmill Emulating Scan Patterns, Mohammad Masud Parvez, Sahil Patel, Sriram Praneeth Isanaka, Frank W. Liou Oct 2021

A Novel Laser-Aided Machining And Polishing Process For Additive Manufacturing Materials With Multiple Endmill Emulating Scan Patterns, Mohammad Masud Parvez, Sahil Patel, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In additive manufacturing (AM), the surface roughness of the deposited parts remains significantly higher than the admissible range for most applications. Additionally, the surface topography of AM parts exhibits waviness profiles between tracks and layers. Therefore, post-processing is indispensable to improve surface quality. Laser-aided machining and polishing can be effective surface improvement processes that can be used due to their availability as the primary energy sources in many metal AM processes. While the initial roughness and waviness of the surface of most AM parts are very high, to achieve dimensional accuracy and minimize roughness, a high input energy density is …


A State-Of-The-Art Review Of Laser-Assisted Bioprinting And Its Future Research Trends, Chaoran Dou, Victoria Perez, Jie Qu, Andrew Tsin, Ben Xu, Jianzhi Li Jun 2021

A State-Of-The-Art Review Of Laser-Assisted Bioprinting And Its Future Research Trends, Chaoran Dou, Victoria Perez, Jie Qu, Andrew Tsin, Ben Xu, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Bioprinting is an additive manufacturing technology with great potential in medical applications. Among available bioprinting techniques, laser-assisted bioprinting (LAB) is a promising technique due to its high resolution, high cell viability, and the capability to deposit high-viscousity bioink. These characteristics allow the LAB technology to control cells precisely to reconstruct living organs. Recent developments of LAB technologies are reviewed in this paper, covering various designs of LAB printers, research progresses in energy-absorbing layer (EAL), the physical phenomenon that triggers the printing process in terms of bubble formation and jet development, printing process parameters, and major factors related to the post-printing …


Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li Jan 2021

Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various process conditions in SLM, such as laser power, point distance and laser exposure time, on the microstructures formed. The as-built samples under high, medium and low energy densities were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that five major crystal structure phases (hexagonal, monoclinic, orthorhombic, body-centered cubic …


Application Of Optimized Laser Surface Re-Melting Process On Selective Laser Melted 316l Stainless Steel Inclined Parts, Jafar Ghorbani, Jianzhi Li, Anil K. Srivastava Aug 2020

Application Of Optimized Laser Surface Re-Melting Process On Selective Laser Melted 316l Stainless Steel Inclined Parts, Jafar Ghorbani, Jianzhi Li, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Lower surface quality of selective laser melting (SLM) manufactured parts remains to be a key shortcoming particularly for high performance functional components. In this paper, the authors utilized Box–Behnken methodology to explore the effect of laser surface re-melting process parameters. The process parameters are:laser power, laser exposure time, laser point distance, and shell layer thickness. The experiments were conducted using Renishaw AM-250 machine. SLM manufactured parts with inclination of 45˚ up-skin were treated with a given surface roughness using laser surface re-melting (LSR). The optimization of process parameters was conducted using response surface methodology and the validation tests was carried …


Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman May 2020

Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman

University Scholar Projects

Selective laser sintering (SLS) is an additive manufacturing technique that involves using a laser to fuse powdered material together, layer by layer, in order to create a 3-D product. Despite its numerous benefits over traditional methods of manufacturing, including higher efficiency, versatility, and the ability to process many materials, selective laser sintering suffers from its propensity to generate structural errors during operation.

Feedback control has been shown to improve fabrication quality in other laser-based additive manufacturing techniques when implemented properly. Widespread exploration of applying feedback control in SLS might lead to significant performance improvements in this form of manufacturing.

This …


Impact Of Part Thickness And Drying Conditions On Saturation Limits In Binder Jet Additive Manufacturing, Nathan B. Crane May 2020

Impact Of Part Thickness And Drying Conditions On Saturation Limits In Binder Jet Additive Manufacturing, Nathan B. Crane

Faculty Publications

Binder jetting (BJ) is a high build-rate additive manufacturing process with growing commercial interest. Growth in BJ applications is driven by the use of finer powders and improved post-processing methods that can produce dense, homogenous final parts. However, understanding of the basic droplet/powder interaction is relatively limited. This paper considers the impact of in-process drying, part geometry, and droplet size on a key printing parameter: binder saturation. Parts of varying thicknesses are printed with a range of saturation levels under various heating conditions. The ratio of the printed part mass to the theoretical part mass is used to detect bleeding. …


Influence Of Droplet Velocity, Spacing, And Inter-Arrival Time On Line Formation And Saturation In Binder Jet Additive Manufacturing, Trenton Colton, Nathan B. Crane Jan 2020

Influence Of Droplet Velocity, Spacing, And Inter-Arrival Time On Line Formation And Saturation In Binder Jet Additive Manufacturing, Trenton Colton, Nathan B. Crane

Faculty Publications

Binder Jetting (BJ) is a low-cost Additive Manufacturing (AM) process that uses inkjet technology to selectively bind particles in a powder bed. BJ relies on the ability to control, not only the placement of binder on the surface but also its imbibition into the powder bed. This is a complex process in which picoliter-sized droplets impact powder beds at velocities of 1-10 m/s. However, the effects of printing parameters such as droplet velocity, size, spacing, and inter-arrival time on saturation level (fraction of pore space filled with binder) and line formation (merging of droplets to form a line) are unknown. …


Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane Sep 2019

Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane

Faculty Publications

Additive manufacturing with conductive materials enables new approaches to printed electronics that are unachievable by standard electronics manufacturing processes. In particular, electronics can be embedded directly into structural components in nearly arbitrary 3D space. While these methods incorporate many of the same materials, the new processing methods require standard test methods to compare materials, processing conditions, and determine design limits. This work demonstrates a test method to quantitatively measure the adhesion failure of printed inks deposited on a substrate without changing the ink printing conditions. The proposed method is an adaption of single lap shear testing in which the lap …


Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton Sep 2019

Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton

Faculty Publications

In this work, two AM technologies were utilized to compare the effectiveness of fabricating a simple electronic device with a conductive trace and hollow cylinder representative of ‘printed packaging’ that would survive harsh environmental conditions. The printed packaging cylinder delineates printed potting for electronics packaging. An nScrypt direct write (DW) system was the primary manufacturing system but a developing technology—coined large area projection sintering (LAPS)—manufactured a subset of samples for comparison. The tests follow Military Standard (MIL STD) 883K and include resiliency evaluation for die shear strength, temperature cycling, thermal shock, and high G loading by mechanical shock. Results indicate …


Micro-Ct Evaluation Of Defects In Ti-6al-4v Parts Fabricated By Metal Additive Manufacturing, Haijun Gong, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, Brent Stucker Jun 2019

Micro-Ct Evaluation Of Defects In Ti-6al-4v Parts Fabricated By Metal Additive Manufacturing, Haijun Gong, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, Brent Stucker

Department of Manufacturing Engineering Faculty Research and Publications

In this study, micro-computed tomography (CT) is utilized to detect defects of Ti-6Al-4V specimens fabricated by selective laser melting (SLM) and electron beam melting (EBM), which are two popular metal additive manufacturing methods. SLM and EBM specimens were fabricated with random defects at a specific porosity. The capability of micro-CT to evaluate inclusion defects in the SLM and EBM specimens is discussed. The porosity of EBM specimens was analyzed through image processing of CT single slices. An empirical method is also proposed to estimate the porosity of reconstructed models of the CT scan.


An Energy Profile Model For Fused Deposition Modeling 3d Printing Process, Calvin Hawkins Jan 2019

An Energy Profile Model For Fused Deposition Modeling 3d Printing Process, Calvin Hawkins

Research Opportunities for Engineering Undergraduates (ROEU) Program 2018-19

This project develops a strategy to monitor and estimate the energy consumption of fused deposition modeling (FDM) additive manufacturing, which will benefit manufacturers and designers seeking to design and manufacture products with minimal energy consumption.


Rheological Properties Of Two Stainless Steel 316l Powders For Additive Manufacturing, Haijun Gong, Xiaodong Xing, Hengfeng Gu Jan 2019

Rheological Properties Of Two Stainless Steel 316l Powders For Additive Manufacturing, Haijun Gong, Xiaodong Xing, Hengfeng Gu

Department of Manufacturing Engineering Faculty Research and Publications

This study measures the rheological properties of two stainless steel 316L powders which are used for the powder-bed-fusion based additive manufacturing process. The purpose is to evaluate the newly acquired powder in comparison with the used and recycled powder, so that both powders can be mixed with each other to supplement the powder usage. The powder rheology properties, such as dynamic property, bulk property, and shear property, are tested and compared. The results and analysis confirm the compatibility of powder mixing.


Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai Aug 2018

Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The application of bulk metallic glasses (BMGs) has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. This research exemplifies a promising additive manufacturing method, i.e., laser-foil-printing (LFP), to fabricate high-quality BMG parts with large dimensions and complex geometries. In this study, Zr52.5Ti5Al10Ni14.6Cu17.9 BMG parts were fabricated by LFP technology in which MG foils are laser welded layer-by- layer upon a substrate. The mechanical properties of the fabricated BMG parts were measured using micro-indentation, tensile test …


Development Of Pre-Repair Machining Strategies For Laser-Aided Metallic Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Leon Hill, Wei Li, Frank W. Liou Aug 2018

Development Of Pre-Repair Machining Strategies For Laser-Aided Metallic Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Leon Hill, Wei Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Remanufacturing worn metallic components can prolong the service life of parts that need frequent replacement but are extremely costly to manufacture, such as aircraft titanium components, casting dies. Additive manufacturing (AM) technology enables the repair of such valuable components by depositing filler materials at the worn area layer by layer to regenerate the missing geometry. In general, damaged parts would be inspected and pre-machined prior to material deposition to remove oil, residue, oxidized layers or defects located in inaccessible regions. Therefore, the motivation of this paper is to introduce pre-repair machining strategies for removing contaminated materials from damaged components and …


Experimental And Theoretical Investigation Of Mechanical Response Of Laser-Sintered Diamond Lattice Structures, Clayton Neff, Neil Hopkinson, Nathan B. Crane Aug 2018

Experimental And Theoretical Investigation Of Mechanical Response Of Laser-Sintered Diamond Lattice Structures, Clayton Neff, Neil Hopkinson, Nathan B. Crane

Faculty Publications

Typically additive manufacturing (AM) processes are limited to a single material per part while many products benefit from the integration of multiple materials with varied properties. To achieve the benefits of multiple materials, the geometric freedom of AM could be used to build internal structures that emulate a range of different material properties such as stiffness, Poisson’s ratio, and elastic limit using only one build material. This paper examines the range of properties that can be simulated using diamond lattice structures manufactured from Nylon 12 with a commercial laser sintering process. Diamond lattices were fabricated with a unit cell length …