Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Michigan Technological University

Department of Biomedical Engineering

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Radiopaque Femnn-Mo Composite Drawn Filled Tubing Wires For Braided Absorbable Neurovascular Devices, Adam J. Griebel, Petra Maier, Henry D. Summers, Benjamin Clausius, Isabella Kanasty, Weilue He, Nicholas Peterson, Carolyn Czerniak, Alexander A. Oliver, David F. Kallmes, Ramanathan Kadirvel, Jeremy E. Schaffer, Roger J. Guillory Oct 2024

Radiopaque Femnn-Mo Composite Drawn Filled Tubing Wires For Braided Absorbable Neurovascular Devices, Adam J. Griebel, Petra Maier, Henry D. Summers, Benjamin Clausius, Isabella Kanasty, Weilue He, Nicholas Peterson, Carolyn Czerniak, Alexander A. Oliver, David F. Kallmes, Ramanathan Kadirvel, Jeremy E. Schaffer, Roger J. Guillory

Michigan Tech Publications, Part 2

Flow diverter devices are small stents used to divert blood flow away from aneurysms in the brain, stagnating flow and inducing intra-aneurysmal thrombosis which in time will prevent aneurysm rupture. Current devices are formed from thin (∼25 μm) wires which will remain in place long after the aneurysm has been mitigated. As their continued presence could lead to secondary complications, an absorbable flow diverter which dissolves into the body after aneurysm occlusion is desirable. The absorbable metals investigated to date struggle to achieve the necessary combination of strength, elasticity, corrosion rate, fragmentation resistance, radiopacity, and biocompatibility. This work proposes and …


Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi Jan 2023

Conductive 3d Nano-Biohybrid Systems Based On Densified Carbon Nanotube Forests And Living Cells, Roya Bagheri, Alicia K. Ball, Masoud Kasraie, Aparna Chandra, Xinqian Chen, Ibrahim Miskioglu, Zhiying Shan, Parisa Pour Shahid Saeed Abadi

Michigan Tech Publications, Part 2

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120–240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and …