Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Theses/Dissertations

2021

Institution
Keyword
Publication

Articles 1 - 30 of 52

Full-Text Articles in Mechanical Engineering

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu Dec 2021

A Vacuum-Driven Distillation Technology Of Aqueous Solutions And Mixtures, Guo Guangyu

Dissertations

Distillation of aqueous solutions and aqueous mixtures has vast industrial applications, including desalination, wastewater treatment, and fruit juice concentration. Currently, two major distillation technologies are adopted in the industry, membrane separation and thermal distillation. However, both of them face certain inevitable drawbacks. Membrane separation has disadvantages as relying on high-grade energy, requiring membrane, fouling problem, narrow treatment range, limited scalability, and vibrating and noisy operating conditions. Traditional thermal distillation technologies can avoid above concerns but has other shortcomings, such as relatively low energy efficiency and yield rate, complicated and bulky system structure, and scaling problem.

This project proposes an innovative …


Droplet-Based Fuel Property Measurements, Wanjun Dang Dec 2021

Droplet-Based Fuel Property Measurements, Wanjun Dang

LSU Doctoral Dissertations

Ongoing work to find renewable biofuels to function as drop-in replacements or blending components with gasoline has identified a large number of fuel candidates. Given the vast number of potential biomass-derived fuel molecules and limited sample sizes, screening tools are required to down-select candidate fuels having desired physical properties to ensure good engine performance. This work investigates approaches for rapid screening of candidate fuels using micro-liter sample sizes targeting four properties -- surface tension, viscosity, heat of vaporization (HOV), and vapor pressure. Measurement techniques for fuel properties are developed based on unit phenomena for liquid fuel droplets including droplet oscillation …


Numerical Simulation Of A Cryogenic Spray, Neel Kishorkumar Shah Dec 2021

Numerical Simulation Of A Cryogenic Spray, Neel Kishorkumar Shah

Doctoral Dissertations and Master's Theses

Cryogenic sprays have many applications in modern engineering. Cooling of electronic equipment subject to high heat flows, surgical ablation of gastrointestinal mucosae or orbital maneuvering are a few examples of their versatility. However, the atomization of a cryogenic liquid is a complex process. During such an event, aerodynamic effects associated with secondary atomization are further affected by thermodynamic flashing. A better understanding of the characteristics of cryogenic sprays is then necessary to allow for improved design and optimization in applications. The overarching objective of this study is to document such characteristics. The numerical simulation was performed over cryogenic nitrogen spray …


State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr Dec 2021

State-Of-The-Art Of Thermal Control Solutions To Establish A Modular, Multi-Orbit Capable Spacecraft Thermal Management System Design Methodology, Robert C. Consolo Jr

Doctoral Dissertations and Master's Theses

Today, the exploration and exploitation of space continues to become a more common occurrence. All types of spacecraft (S/C) utilize various types of thermal management solutions to mitigate the effects of thermal loading from the unforgiving vacuum of space. Without an appropriately designed thermal system, components on-board the S/C can experience failure or malfunction due to fluctuations in temperatures either beyond the designed operational parameters or unstable oscillating temperatures. The purpose of this study is to perform a comprehensive review of technologies available today that are being used for thermal management onboard S/C in addition to investigating the means to …


Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo Dec 2021

Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo

Graduate Theses and Dissertations

The understanding of bubble dynamics during boiling is critical to the design of advanced heater surfaces to improve the boiling heat transfer. The stochastic bubble nucleation, growth, and coalescence processes have made it challenging to obtain mechanistic models that can predict boiling heat flux based on the bubble dynamics. Traditional boiling image analysis relies on the extraction of the dominant physical quantities from the images and is thus limited to the existing knowledge of these quantities. Recently, machine-learning-aided analysis has shown success in boiling crisis detection, heat flux prediction, real-time image analysis, etc., whereas most of the existing studies are …


Thermometry Via Diffusion In Ferrous Core-Shell Nanoparticles For Induction Heating Applications, Hayden Carlton Dec 2021

Thermometry Via Diffusion In Ferrous Core-Shell Nanoparticles For Induction Heating Applications, Hayden Carlton

Graduate Theses and Dissertations

Induction heating causes the release of enormous amounts of heat from dispersed magnetic nanoparticles. While the rate of heat transfer can be easily quantified calorimetrically, measuring the temperature of the nanoparticles on the nanoscale presents experimental challenges. Fully characterizing the temperature and thermal output of these magnetic particles is necessary to gauge overall heating efficiency and to provide a more holistic understanding of heat transfer on the nanoscale. Herein, this dissertation seeks to develop a novel nanoparticle thermometry technique, which correlates diffusion behavior in core-shell nanoparticles to local temperature. Initial measurements suggested that heating silica capped ferrous nanoparticles (SCNPs) via …


Optimized Tip Cooling Using Am Process, Alberto H. Gamez, Lourdes Sarmiento Martinez, Andrew Van Bogelen Dec 2021

Optimized Tip Cooling Using Am Process, Alberto H. Gamez, Lourdes Sarmiento Martinez, Andrew Van Bogelen

Mechanical Engineering

This Final Design Review (FDR) reports on the senior design project undertaken by our team of mechanical engineering seniors at California Polytechnic State University, San Luis Obispo. This project seeks to use the additive manufacturing process to improve the existing design of a Taurus 60 gas turbine injector tip. The current injector tip is owned by Solar Turbines, a designer and manufacturer of gas turbines for electric generation, propulsion, as well as natural resource transportation. The challenge at hand is to design a new injector tip that will be reliable for at least 60,000 hours and provide ease of replacement, …


Injection Studies On A Small-Scale Rotating Detonation Engine With Improved Flow Control, Jonathan J. Wyatt Dec 2021

Injection Studies On A Small-Scale Rotating Detonation Engine With Improved Flow Control, Jonathan J. Wyatt

Theses and Dissertations

The Rotating Detonation Engine (RDE) has gained increasing attention in recent years for its potential advantages over typical deflagration combustion. A Micro-RDE design with an outer diameter of 28mm operating on Nitrous Oxide and Ethylene was recently developed, which stretched the limits of small-scale detonation engines. The testing on this rig has shown a stable one wave mode detonation with frequencies reaching 16.8 kHz. Key parameters that influence the detonation wave mode are cell size, fill height, and wave speed, which are heavily influence d by injection schemes. Previous testing utilized a partially premixed jets in crossflow (JIC) injection scheme, …


Investigations Of The Negative Temperature Coefficient Region Of Sustainable Aviation Fuels For Mitigation Of Global Warming, Richard C. Smith Iii Nov 2021

Investigations Of The Negative Temperature Coefficient Region Of Sustainable Aviation Fuels For Mitigation Of Global Warming, Richard C. Smith Iii

Honors College Theses

An investigation was led to determine the correlations between the durations of Ignition Delay (ID), Combustion Delay (CD), Derived Cetane Number (DCN), Negative Temperature Coefficient (NTC), Low-Temperature Heat Release (LTHR) regions, ringing intensity, and precent mass burn, and the effect of blending the Fischer-Tropsch (F-T) synthetic aerospace fuel (SAF), iso-paraffinic kerosene (IPK), with petroleum derived Jet-A aerospace fuel on these regions. Neat blends of Jet-A and IPK and three by mass blends of the fuels will be researched. These blends include mass percentages of 75%Jet-A and 25%IPK (75Jet-A25IPK), 50%Jet-A 50%IPK (50Jet-A50IPK), and 25%Jet-A 75%IPK (25Jet-A75IPK). The study will utilize a …


Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra Oct 2021

Numerical Modeling Of Advanced Propulsion Systems, Peetak P. Mitra

Doctoral Dissertations

Numerical modeling of advanced propulsion systems such as the Internal Combustion Engine (ICE) is of great interest to the community due to the magnitude of compute/algorithmic challenges. Fuel spray atomization, which determines the rate of fuel-air mixing, is a critical limiting process for the phenomena of combustion within ICEs. Fuel spray atomization has proven to be a formidable challenge for the state-of-the-art numerical models due to its highly transient, multi-scale, and multi-phase nature. Current models for primary atomization employ a high degree of empiricism in the form of model constants. This level of empiricism often reduces the art of predictive …


Liquid-Vapor Distributions In Evacuated Small Diameter Channels For Improved Accuracy Of Initial Conditions In Modeling Of Oscillating Heat Pipes, Travis Mayberry Oct 2021

Liquid-Vapor Distributions In Evacuated Small Diameter Channels For Improved Accuracy Of Initial Conditions In Modeling Of Oscillating Heat Pipes, Travis Mayberry

Mechanical Engineering Research Theses and Dissertations

Oscillating heat pipes, also known as pulsating heat pipes, are increasingly becoming a preferred high-performance thermal ground plane in a variety of heat spreading applications due to a number of advantages over traditional copper-water wicked heat pipes, including their lighter weight, thinner profiles, simpler fabrication, and greater variety of material and working fluid options. A major barrier to even wider adoption, however, is the lack of comprehensive analytical models to simulate their performance. A key input to first principles models simulating the fundamental physics of the devices is the initial condition of liquid and vapor segment lengths and their distribution …


Thermal Vacuum Chamber Modification, Testing, And Analysis, Jared C. Lehmann Sep 2021

Thermal Vacuum Chamber Modification, Testing, And Analysis, Jared C. Lehmann

Master's Theses

This work discusses the modification and analysis of the Blue Thermal Vacuum Chamber (TVAC) located at the Space Environments Lab at California Polytechnic State University, San Luis Obispo. The modified design has a cylindrical test section and can accommodate 6U Cubesats or larger for educational or research purposes. The sizing process for the modified shroud cooling system and modular heating plates is discussed. The modified cooling system uses existing nitrogen plumbing into the chamber and control systems with a new copper shroud. The modified heating system uses modular heater plates, which utilize the existing three heater strips. The modified system …


Geometrically Complex Planar Heat Exchangers, Derli Dias Do Amaral Junior, Jose Lage Aug 2021

Geometrically Complex Planar Heat Exchangers, Derli Dias Do Amaral Junior, Jose Lage

Mechanical Engineering Research Theses and Dissertations

In this study, geometrically complex planar heat exchangers, designed in line with the Constructal Law and operating at steady-state, are investigated numerically. The work is divided into two parts, one focusing on diffusion heat transfer in a rectangular plane and another on conjugate diffusion-convection heat transfer in a circular plane heat exchanger.

In the first part, a heat generating rectangular solid volume made of a low conductivity material is cooled through a small, isothermal side-section of the domain. The diffusion cooling process is improved by distributing within the heat generating material a fixed amount of a high conductivity material. The …


Effects Of Pillar And Sealing Design On Thermal And Mechanical Performance Of Vacuum Insulated Glazing, Wenyuan Zhu Aug 2021

Effects Of Pillar And Sealing Design On Thermal And Mechanical Performance Of Vacuum Insulated Glazing, Wenyuan Zhu

Masters Theses

Vacuum insulated glazing with a low-emittance coating has a great market potential as an effective transparent insulator. The thermal insulating performance of VIG is determined by its design, including material selection and configuration of different components. Thermal conductance of the vacuum gap, as a transport bottleneck, is one of the primary factors controlling the thermal transport across VIG. In particular, since support pillars and sealings provide the main thermal transport channels across the vacuum gap, increasing the pillar and sealing thermal resistance is a key strategy for effective thermal insulation, while maintaining the vacuum space and mechanical strength of VIG. …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee Jun 2021

Electro-Thermal Transport In Two-Dimensional Materials And Their Heterostructures, Arnab K. Majee

Doctoral Dissertations

”Smaller is better” is the mantra that has driven semiconductor industry for the past 50 years. The on-going quest for faster electronic switching, higher transistor density, and better device performance, has been driven by a self-fulfilling prophecy popularly known as Moore’s law, according to which the number of transistors per unit area of a chip doubles itself approximately every two years. A modern smartphone has about 8 billion transistors, which is as large as current earth’s population. Although each transistor dissipates negligible power, but the collective power dissipation from all the transistors in an electronic gadget and inefficient heat removing …


Heat And Fluid Flow Downstream Of A Row Of Finite-Height Circular Cylinders, Saarah Akhand Jun 2021

Heat And Fluid Flow Downstream Of A Row Of Finite-Height Circular Cylinders, Saarah Akhand

Major Papers

Induced turbulence created by a row of finite height cylinders is applicable in different engineering applications, e.g., for promoting convective cooling of solar panel. In this study, flow past a row of 13 side-by-side finite-height circular cylinders having a height-diameter (h/d) ratio of 2 (20mm/10mm) and center to center distance between adjacent cylinders (g) of 2d was scrutinized at a Reynolds number based on cylinder height of 4700 inside a wind tunnel over a flat plate. The flow at 5h and 10h downstream of the cylinder array was characterized using a 2-d hot wire anemometer. To understand the convective heat …


Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle Jun 2021

Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle

Mechanical Engineering

Environmental chambers for tensile testing machines are used to study how a multitude of materials behave in extreme temperatures. These chambers provide the necessary information to innovate cutting edge technology for materials in fields such as aerospace. These chambers are often heavy and expensive requiring a significant amount of time and money just in the installation process alone. This report will serve to outline and define the design and fabrication of an environmental chamber, conducted by a team of four senior mechanical engineering students at California Polytechnic State University, San Luis Obispo. The goals of the project include a low-weight …


Consumer-Ready Insulated Solar Electric Cooker, Simon Ford, Sachin Gokhale, Brendan Lynn, Richard Nguyen Jun 2021

Consumer-Ready Insulated Solar Electric Cooker, Simon Ford, Sachin Gokhale, Brendan Lynn, Richard Nguyen

Mechanical Engineering

An insulated solar electric cooker, or ISEC, converts solar energy into electricity to cook food, boil water, provide heat or even help charge batteries. In this project, the focus is an ISEC with a phase change material (PCM) that helps store heat when the solar energy input is minimal, such as after the sun has set. Although a successful ISEC already exists that utilizes PCM, this product can be improved in many ways. The specific revisions investigated in this report are the improvement of the thermal efficiency with the implementation of a vacuum-sealed outer pot, the reduction of the overall …


Desalination For Sustainable Water Production With An Emphasis On Low Pressure Distillation, Jessica Vivian Savage May 2021

Desalination For Sustainable Water Production With An Emphasis On Low Pressure Distillation, Jessica Vivian Savage

Doctoral Dissertations and Master's Theses

Freshwater resources depletion is a growing concern. This freshwater scarcity motivates research into seawater desalination as a means for alleviating the stresses on water demands. The primary methods of desalination include filtration and distillation. This paper explores the potential energy savings of vacuum distillation for seawater desalination to reduce the amount of energy needed to achieve phase change.

Depending on the vacuum boiler design, the vaporization mechanism may be boiling, evaporation, or cavitation. There is very little literature on cavitation that involves mass transfer, so cavitation is not developed here. This thesis focuses on standard models for boiling and evaporation …


An Investigation Of The Effects Of Variable Magnetic Field Gradients On Soot And Co Emissions From Non-Premixed Hydrocarbon Flames, Edison Ekperechukwu Chukwuemeka May 2021

An Investigation Of The Effects Of Variable Magnetic Field Gradients On Soot And Co Emissions From Non-Premixed Hydrocarbon Flames, Edison Ekperechukwu Chukwuemeka

LSU Doctoral Dissertations

The interaction of the paramagnetic species in a combustion process with the mag- netic field placed in the vicinity of non-premixed flames affects the characteristics of the non-premixed flames - flame height and flame lift-off height. However, the effect of this magnetic interaction on the pollutants generated by the flame is unknown.

In general, pollutant formation is promoted in most combustion systems due to in- complete combustion of the hydrocarbon due to improper mixing. Since paramagnetic combustion species such as O2, O, OH, etc interacts with magnetic fields and possess a preferential motion direction, imposing magnetic field on non-premixed flames …


Feasibility Study Of Portable Solar Powered Blood Storing Refrigerator, Saroj Subedi May 2021

Feasibility Study Of Portable Solar Powered Blood Storing Refrigerator, Saroj Subedi

Honors Theses

This report is focused on the preliminary feasibility of portable solar-powered blood-storing refrigerators primarily based on calculations of energy required to maintain the temperature of the refrigerator, the electricity required throughout the day, calculating sufficiency of power supplied by the solar panel, and selection of battery for power storage. The method and the trend of a feasibility study involve the study of blood properties, separation of blood components after donation, and their storage conditions. Then, the portable size of the refrigeration has been proposed with three different compartments for storage of each blood component. The further methods involve the selection …


Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee May 2021

Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee

Doctoral Dissertations

As the global share of electricity generation from intermittent renewable energy sources increases, developing efficient and scalable electricity storage technologies becomes critical to modernizing the grid, matching the supply and demand, and raising the capacity factor of renewable generation. The Ground-Level Integrated Diverse Energy Storage (GLIDES) is an efficient energy storage technology invented at Oak Ridge National Laboratory (ORNL). GLIDES stores energy by compressing gas using a liquid piston in pressure vessels benefiting from employing hydraulic turbomachinery which are more efficient than gas turbomachinery. Therefore, GLIDES has higher round-trip efficiency (RTE) than Compressed Air Energy Storage (CAES). Since GLIDES employs …


Transient Performance And Melt Front Characterization Of Phase Change Materials, Tyler Stamps May 2021

Transient Performance And Melt Front Characterization Of Phase Change Materials, Tyler Stamps

Mechanical Engineering Undergraduate Honors Theses

Thermal management systems are often over-designed for average use in order to handle spikes in heat generation, which increases the spatial and financial requirements. One way to mitigate this is via the use of phase change materials (PCMs) as thermal buffers and storage media. This material type exhibits excellent latent heat at the sacrifice of conductivity. The present paper examines the melt front behavior of a common solid to liquid PCM, paraffin, experimentally and numerically. The experimental scenario was a block of PCM with a constant temperature heat flux introduced on one end and a constant temperature cold boundary condition …


Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes May 2021

Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes

Mechanical Engineering Undergraduate Honors Theses

With the inherent usage of the computer when dealing with additive manufacturing, it only makes sense to use that higher computing power through simulation and iterative design to use the mathematical concept of topology and optimize the kind of geometry and shapes to be produced for a certain application, especially thermal ones since most 3D printing applications focus on purely the mechanical. To determine what the shape will be, an objective function of how much heat can be dispersed from a hypothetical heat source, assumed to be a type of electronic device, is maximized while being constrained by other variables, …


Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler May 2021

Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler

Mechanical Engineering Undergraduate Honors Theses

The overall goal of this research project is to synthesize iron core, silica capped nanoparticles that, when they are exposed to a particular magnetic field, will react by increasing in temperature and emitting substantial thermal output. They will be injected into the human body for biological benefit by targeted thermal radiation. Once in the human body, ideally, they will be able to target a specific area, and then a magnetic field will be applied to induce thermal output through the process of hyperthermia. As the nanoparticles emit heat, they will mimic the natural bodily behavior seen by way of hyperthermia, …


Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee May 2021

Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee

Masters Theses

Proposing experimental investigation of spray cooling/heating of a near-isothermal, scalable, efficient, high density, hydro-pneumatic integrated energy storage system; capable of spray cooling/heating during gas compression/expansion and capable of excess heat integration. The invented Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage technology capable of storing energy in high-pressure vessel using hydro-pneumatic concept. Indicated roundtrip efficiencies of 98% can be reached using the proposed technology marking an isothermal compression/expansion energy storage.


Enercon Station Vacuum Pump Replacement, Clint Hembree, Jared D'Amico, Connor Moore, Paul Jeffrey Fontenot, Sydnee Castello, J.J. Clements Apr 2021

Enercon Station Vacuum Pump Replacement, Clint Hembree, Jared D'Amico, Connor Moore, Paul Jeffrey Fontenot, Sydnee Castello, J.J. Clements

Senior Design Project For Engineers

This details the progress of the ENERCON pump replacement project as completed by the Kennesaw State University interdisciplinary senior design group. This project is a two-semester capstone effort for the engineering program at Southern Polytechnic School of Engineering, overseen by Dr. McFall during Fall 2020 and Dr. Khalid during Spring 2021 semesters. The 2020-2021 KSU Interdisciplinary Senior Design team was tasked with completing an Engineering Change Package (ECP) for existing vacuum pumps at ENERCON Station. The mechanical, electrical, and civil students worked together, performing evaluations on existing plant systems to ensure the plant could support the new vacuum pumps. By …


Investigation Of Dusting Hole Film Cooling On A Transonic Turbine Blade Tip With A Squealer, Matthew Cox Apr 2021

Investigation Of Dusting Hole Film Cooling On A Transonic Turbine Blade Tip With A Squealer, Matthew Cox

Honors Capstone Projects and Theses

No abstract provided.


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …