Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Series

2020

Institution
Keyword
Publication

Articles 1 - 15 of 15

Full-Text Articles in Mechanical Engineering

Numerical Modeling And Conjugate Heat Transfer Analysis Of Single U-Tube Vertical Borehole Heat Exchangers, Talha Khan Nov 2020

Numerical Modeling And Conjugate Heat Transfer Analysis Of Single U-Tube Vertical Borehole Heat Exchangers, Talha Khan

FIU Electronic Theses and Dissertations

The primary purpose of this thesis was to develop a design for improving the efficiency of the vertical type single u-tube borehole heat exchanger. A thorough literature review of the various existing analytical and numerical models of the borehole heat exchanger (BHEs) was performed and numerical modeling of the BHE was conducted to solve the conjugate heat transfer problem in the BHE in 3D using ANSYS Fluent 2019 R1. A comparison between the results obtained using various mesh sizes, types, different turbulence models showed the independence of the parameters on the numerical simulation results.

From the numerical simulation, it was …


Potential Energy Generation From Agricultural Residue In Indonesia, Adrian Rizqi Irhamna Aug 2020

Potential Energy Generation From Agricultural Residue In Indonesia, Adrian Rizqi Irhamna

English Language Institute

Indonesia has great potential of biomass sources from their agricultural residue, which can potentially be used for alternative energy generation. This preliminary research explores the most suitable technology for energy generation from agricultural residue and its challenge for application in Indonesia. The study showed that biomass utilization via the direct combustion process is recommended for energy generation. It is also reported that the pretreatment process of drying and washing, are required to increase the fuel quality and plant efficiency.


What Difference Does A Catalyst Make?, Tammy Guthrie, Mike Jackson, Holly Haney Jul 2020

What Difference Does A Catalyst Make?, Tammy Guthrie, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use different catalysts for the decomposition of Hydrogen Peroxide, to determine if different catalysts affect the energy that is generated during the reaction.


Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb Jun 2020

Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb

Mineta Transportation Institute

The study addresses two of the main challenges facing combustion modeling for transportation fuels: simultaneous simulation of non-related combustion problems and reducing the computational cost of the modeling process itself. To address the first challenge, researchers determine a characteristic flame time from thermal diffusivity and laminar burning velocity. Researchers examine parametric dependence of flame time and ignition delay time on pressure, temperature and equivalence ratio for methane, based on validated chemical kinetic mechanisms. The study reveals flame time and ignition delay time show similar temperature dependence, flame time has stronger dependence on equivalence ratio and weaker dependence on pressure than …


Fly Ash Based Geopolymer For High Temperature And High Compressive Strength Applications In Aggressive Environment, Aaryan Manoj Nair, Akm S. Rahman May 2020

Fly Ash Based Geopolymer For High Temperature And High Compressive Strength Applications In Aggressive Environment, Aaryan Manoj Nair, Akm S. Rahman

Publications and Research

Geopolymers are the results of geosynthetic reactions between aluminosilicates and strong bases. This results in chemical bonds between aluminum (Al), Silicon (Si)and oxygen (O) composing polymer rings in tetrahedral coordination. These bonds give them widespread useful applications such as high heat bearing ceramics, and base construction material whilst being far more environmentally conscious. The purpose of the experiment is to examine the effect of Silicon Carbide whisker and inorganic glass particles on thermal and mechanical properties of Geopolymers. This study will help understand the effect of various compositions and concentrations of SiO2 in mechanical strength. In this experiment, the …


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello May 2020

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


Research Tools And Their Uses For Determining The Thermal Inactivation Kinetics Of Salmonella In Low-Moisture Foods, Soon Kiat Lau Apr 2020

Research Tools And Their Uses For Determining The Thermal Inactivation Kinetics Of Salmonella In Low-Moisture Foods, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

The reputation of low-moisture foods as safe foods has been crumbling over the past decade due to repeated involvement in foodborne illness outbreaks. Although various pasteurization technologies exist, a majority are thermal processes and have not been well-characterized for pasteurizing low-moisture foods. In addition, the nature of a low-moisture food matrix introduces various experimental complications that are not encountered in high-moisture foods. In this dissertation, the development, building instructions, and characterization of various open source tools for studying the inactivation kinetics of microorganisms in low-moisture foods are described. The first tool is the TDT Sandwich, a dry heating device for …


Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson Apr 2020

Thermal Modeling Of Additive Manufacturing Using Graph Theory: Validation With Directed Energy Deposition, Jordan Severson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Metal additive manufacturing (AM/3D printing) offers unparalleled advantages over conventional manufacturing, including greater design freedom and a lower lead time. However, the use of AM parts in safety-critical industries, such as aerospace and biomedical, is limited by the tendency of the process to create flaws that can lead to sudden failure during use. The root cause of flaw formation in metal AM parts, such as porosity and deformation, is linked to the temperature inside the part during the process, called the thermal history. The thermal history is a function of the process parameters and part design.

Consequently, the first step …


Quantifying Wicking In Functionlized Surfaces, Maureen Winter, Ryan Regan, Alfred Tsubaki, Craig Zuhlke, Dennis Alexander, George Gogos Apr 2020

Quantifying Wicking In Functionlized Surfaces, Maureen Winter, Ryan Regan, Alfred Tsubaki, Craig Zuhlke, Dennis Alexander, George Gogos

UCARE Research Products

Wicking remains the enigmatic key factor in many research areas. From boiling in power plants, to anti-icing on plane wings, to medical instruments, to heat pipes, efficiency and safety depend on how quickly a surface becomes wet. Yet wicking remains difficult to quantify and define as a property of the surface. This experiment strives to measure the wicking property by examining the rate that a liquid can be pulled out of a container. A superhydrophilic surface is placed in contact with the liquid at the bottom of a tube so that the volume flow rate across the surface can be …


The Application Of Evolutionary Algorithms In Multi-Objective Design And Optimization Of Air Cooled Heatsinks, Younis Osama Abdelsalam, Sajad Alimohammadi, Tim Persoons Apr 2020

The Application Of Evolutionary Algorithms In Multi-Objective Design And Optimization Of Air Cooled Heatsinks, Younis Osama Abdelsalam, Sajad Alimohammadi, Tim Persoons

Articles

Genetic algorithms (GAs) are considered to be one of the main types of evolutionary algorithms (EAs) and are being increasingly used in various engineering design applications. To a large extent, plate-fin heatsinks are used in the thermal management of compact electronic equipment and data centers. The shape optimization of the heatsinks is not rigorously investigated during the design process of high power electronics. Any improvements in the effectiveness of the heatsinks impact the energy consumed by large-scale information communication technology (ICT) facilities including data centers and telecommunication systems and promote a more sustainable use of raw materials. This paper investigates …


Pool Boiling Inversion On Femtosecond Laser Surface Processed 304 Stainless Steel And Its Impact On Steady-State Time Constants, Justin Costa-Greger, Alfred Tsubaki, Josh Gerdes, Mark Anderson, Craig Zuhlke, Dennis Alexander, Jeff Shield, George Gogos Apr 2020

Pool Boiling Inversion On Femtosecond Laser Surface Processed 304 Stainless Steel And Its Impact On Steady-State Time Constants, Justin Costa-Greger, Alfred Tsubaki, Josh Gerdes, Mark Anderson, Craig Zuhlke, Dennis Alexander, Jeff Shield, George Gogos

UCARE Research Products

FLSP surfaces resulting in boiling inversion require longer times to reach steady-state once inversion has occurred Boiling inversion has been shown to be the result of changing nucleation dynamics in which a large number of nucleation sites activate Increased time required to reach steady-state is linked to the rate at which these nucleation sites activate. Heat fluxes above the boiling inversion point can require up to an additional 3 hours to reach steady-state, compared to the typical 15-20 minutes reported in the literature


System Level Model For Pumped Two-Phase Cooling Systems, Leitao Chen, Timothy Joseph Chainer, Pritish Ranjan Parida, Mark Delorman Schultz, Fanghao Yang Mar 2020

System Level Model For Pumped Two-Phase Cooling Systems, Leitao Chen, Timothy Joseph Chainer, Pritish Ranjan Parida, Mark Delorman Schultz, Fanghao Yang

Publications

Techniques are provided for system level modeling of two-phase cooling systems. In one example, a computer implemented method comprises determining, by a system operatively coupled to a processor, respective sets of steady state values for parameters at inlet-outlet junctions using a system model, wherein the determining is based on first user input specifying a cooling system design comprising a plurality of part objects, wherein adjacent part objects in a flow direction are connected at the inlet-outlet junctions. The computer-implemented method can also comprise generat­ing, by the system, a graphical display that depicts the respective sets of parameter values at the …


Internet Of Things In Sustainable Energy Systems, Abdul Salam Jan 2020

Internet Of Things In Sustainable Energy Systems, Abdul Salam

Faculty Publications

Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy …


Energy Conservation And Heat Transfer Enhancement For Mixed Convection On The Vertical Galvanizing Furnace, Dan Mei, Yuzheng Zhu, Xuemei Xu, Futang Xing Jan 2020

Energy Conservation And Heat Transfer Enhancement For Mixed Convection On The Vertical Galvanizing Furnace, Dan Mei, Yuzheng Zhu, Xuemei Xu, Futang Xing

Mechanical & Aerospace Engineering Faculty Publications

The alloying temperature is an important parameter that affects the properties of galvanized products. The objective of this study is to explore the mechanism of conjugate mixed convection in the vertical galvanizing furnace and propose a novel energy conservation method to improve the soaking zone temperature based on the flow pattern and heat transfer characteristics. Herein, the present study applied the k-ε two-equation turbulence model to enclose the Navier-Stokes fluid dynamic and energy conservation equations, and the temperature distributions of the steel plate and air-flow field in the furnace were obtained for six Richardson numbers between 1.91 ⋅ 105 …


Non-Linear Non-Iterative Transient Inverse Conjugate Heat Transfer Method Applied To Microelectronics, David Gonzalez Cuadrado, Amy Marconnet, Guillermo Paniagua Jan 2020

Non-Linear Non-Iterative Transient Inverse Conjugate Heat Transfer Method Applied To Microelectronics, David Gonzalez Cuadrado, Amy Marconnet, Guillermo Paniagua

CTRC Research Publications

Solving for temperature profiles given boundary conditions, geometry, and material properties is rela- tively straightforward given the wealth of analytical and computational techniques available. However, experimentally we often measure temperatures and seek to understand unknown boundary conditions or material properties. This problem is generally ill-posed. Thus, to get the value of these input param- eters, we use inverse methods: knowing the output of the system ( i.e. , temperature), we can compute the value of the unknown parameters ( e.g. , thermal conductivity or heat fluxes). In microelectronics, the location and magnitude of the boundary conditions including local heat generation …