Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

The Effects Of 3d Printing Parameters And Surface Treatments On Convective Heat Transfer Performance, Lucas N. Pereira Jan 2019

The Effects Of 3d Printing Parameters And Surface Treatments On Convective Heat Transfer Performance, Lucas N. Pereira

Electronic Theses and Dissertations

Additive manufacturing technology and applications have quickly expanded in many industries over the last five years. As additive manufacturing is studied and refined, improvements in resolution and strength have helped propel further growth of the industry. This study focuses on an additive manufacturing technology called fused filament fabrication (FFF). FFF involves the extrusion and layer-by-layer deposition of a molten thermoplastic material to create the desired part. One potential new application of fused filament fabrication is the manufacture of heat exchangers and heat sinks. This study focuses on developing baseline experimental data related to convective heat transfer coefficients over surfaces of …


Optimization Of Heat Sinks In A Range Of Configurations., Archibald Allswell Amoako Jan 2018

Optimization Of Heat Sinks In A Range Of Configurations., Archibald Allswell Amoako

Electronic Theses and Dissertations

In this study, different heatsink geometries used for electronic cooling are studied and compared to each other to determine the most efficient. The goal is to optimize heat transfer of the heat sinks studied in a range of configuration based on fin geometry. Heat sinks are thermal conductive material devices designed to absorb and disperse heat from high-temperature objects (e.g. Computer CPU). Common materials used in the manufacturing of heat sinks are aluminum and copper due to their relatively high thermal conductivity and lightweight [1]. Aluminum is used as the material for the heatsinks studied in this research project. To …


Simulation Of An Ethylene Flame With Turbulence, Soot And Radiation Modeling, Santu Golder Jan 2018

Simulation Of An Ethylene Flame With Turbulence, Soot And Radiation Modeling, Santu Golder

Electronic Theses and Dissertations

This thesis will investigate soot models that are available in commercial codes. We will look at the effect of turbulence models, gravity, soot models and radiation. Simulations will be compared to Coppalle and Joyeux [1]. The flame is an ethylene air diffusion flame at a Reynolds number of 5700. Simulations show the SST turbulence model, one-step soot model and Rosseland radiation model including gravity agree well with experimental data (temperature and soot). Flamelet soot modeling from Carbonell et al. [2] and flamelet radiation modeling from Doom [3] has been incorporated and compared as well.


Simulations Of Impinging Jet With A Range Of Configuration, Devansh Singh Jan 2017

Simulations Of Impinging Jet With A Range Of Configuration, Devansh Singh

Electronic Theses and Dissertations

Impinging jet technique is widely increasing across the globe due to its ability to produce high heat and mass transfer as compared to other traditional methods. Three cases of impinging jets related to cooling technologies for a gas turbine were investigated. The first case involves a single jet impinging on a flat plate. The second case has an array of jets impinging on a curved surface. The third case deals with simulating impinging jet in crossflow. The first case was used for validation and shows the effect of mesh and inlet boundary conditions. After careful observation, it was seen that …


Oscillating Heat Pipe Performance With Evaporator Section Modifications, Mitchell Hoesing Jan 2016

Oscillating Heat Pipe Performance With Evaporator Section Modifications, Mitchell Hoesing

Electronic Theses and Dissertations

The continuous development of electronic components to become faster and smaller has led to an increasing problem with thermal management. Thermal management ensures that the component operating temperatures are within a safe range, which maintains performance and improves reliability and lifespan. Traditional thermal management devices, such as the extruded-fin heat sink, are incapable of maintaining the safe operating temperature range for current and future high heat flux cooling applications. A device that has the capability to meet this growing need is the oscillating heat pipe. Oscillating heat pipes (OHPs) are passive, two-phase cooling devices that have been shown to transfer …