Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Old Dominion University

Electrical & Computer Engineering Faculty Publications

Articles 1 - 1 of 1

Full-Text Articles in Mechanical Engineering

Hybridization From Guest-Host Interactions Reduces The Thermal Conductivity Of Metal-Organic Frameworks, Mallory E. Decoster, Hasan Babaei, Sangeun S. Jung, Zeinab M. Hassan, John T. Gaskins, Ashutosh Giri, Emma M. Tiernan, John A. Tomko, Helmut Baumgart, Pamela M. Norris, Alan J.H. Mcgaughey, Christopher E. Wilmer, Engelbert Redel, Gaurav Giri, Patrick E. Hopkins Jan 2022

Hybridization From Guest-Host Interactions Reduces The Thermal Conductivity Of Metal-Organic Frameworks, Mallory E. Decoster, Hasan Babaei, Sangeun S. Jung, Zeinab M. Hassan, John T. Gaskins, Ashutosh Giri, Emma M. Tiernan, John A. Tomko, Helmut Baumgart, Pamela M. Norris, Alan J.H. Mcgaughey, Christopher E. Wilmer, Engelbert Redel, Gaurav Giri, Patrick E. Hopkins

Electrical & Computer Engineering Faculty Publications

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in …