Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Waste Heat Recovery Of Industrial Regenerative Thermal Oxidizer (Rto), A Case Study, James Trimpe Jr. Jan 2021

Waste Heat Recovery Of Industrial Regenerative Thermal Oxidizer (Rto), A Case Study, James Trimpe Jr.

Theses and Dissertations--Mechanical Engineering

Industrial processes that utilize and release hazardous compounds into the atmosphere are required to break down those compounds before exhausting them from their facilities. An industry-recognized method to break down those hazardous compounds is through thermal oxidation. Thermal oxidation is a process where the compounds are exposed to their auto-ignition temperature in an oxygen-rich environment and combust. The output of thermal oxidation is carbon dioxide, water vapor, and heat. Thermal oxidizers are equipment that performs the thermal oxidation process. The heat output from thermal oxidizers is wasted if directly exhausted into the atmosphere. Regenerative thermal oxidizers (RTOs) use the waste …


Kinetics Of Elementary Reactions In Graphene Oxidation And Kinetics Of Oh* In Hydrogen Flames, Siamak Mahmoudi Jan 2021

Kinetics Of Elementary Reactions In Graphene Oxidation And Kinetics Of Oh* In Hydrogen Flames, Siamak Mahmoudi

Theses and Dissertations--Mechanical Engineering

Due to diverse applications of graphene, a kinetic mechanism describing rates of elementary reactions is extremely useful. To achieve that goal the elementary reactions need to be detected and their rates need to be determined. In this work the objectives are to use first-principle tools to find those reactions and analyze their paths in the context of graphene oxidation. Density functional theory (DFT) calculations provide the best approximation to the Schr\"{o}dinger equation, which is not feasible to solve analytically for large molecules like graphene. We have performed these calculations to find stable configurations (geometry optimization) and minimum energy paths between …


Evaluation Of Radiative Conductivity Inside A Porous Media With The Effect Of Participating Medium Based On Microscale Imaging, Mingping Zheng Jan 2021

Evaluation Of Radiative Conductivity Inside A Porous Media With The Effect Of Participating Medium Based On Microscale Imaging, Mingping Zheng

Theses and Dissertations--Mechanical Engineering

Space vehicles will experience high loads of heat while entering the planetary atmosphere. At such high temperature, radiation becomes the dominant mode of heat transfer. Since the atmospheric entry environment is nearly impossible to duplicate in a laboratory environment, a numerical model to evaluate thermal performance of the thermal protection system was established. The model simulates the radiative heat transfer process in highly porous media, and the process also takes into account the influence of the participating media. An iterative approach and periodic boundary conditions are used to solve The unbalanced heat flux problem. CT scanned microscale Fiberform and artificial …


Modeling Thin Layers In Material Response Solvers, Christen Setters Jan 2021

Modeling Thin Layers In Material Response Solvers, Christen Setters

Theses and Dissertations--Mechanical Engineering

Thermal Protection Systems (TPS) are a necessary component for atmospheric entry. Most TPS contain thin layers of various materials such as ceramic coatings, pore sealers and bonding agents. When modeling TPS, these thin layers are often neglected due to the difference in scale between the TPS (centimeters) and the thin layers (micrometers). In this study, a volume-averaging flux-conservation method is implemented in the governing equations of a finite volume material response code. The model proposes the addition of a volume and area fraction coefficient which utilizes a weighted-averaging between the amount of thin layer and heat shield material in a …