Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu Jan 2021

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for …


Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren Oct 2018

Interface Model Of Pem Fuel Cell Membrane Steady-Dtate Behavior, Russell L. Edwards, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

Modeling works which simulate the proton-exchange membrane fuel cell with the computational fluid dynamics approach involve the simultaneous solution of multiple, interconnected physics equations for fluid flows, heat transport, electrochemical reactions, and both protonic and electronic conduction. Modeling efforts vary by how they treat the physics within and adjacent to the membrane-electrode assembly (MEA). Certain approaches treat the MEA not as part of the computational domain, but rather an interface connecting the anode and cathode computational domains. These approaches may lack the ability to consistently model catalyst layer losses and MEA ohmic resistance. This work presents an upgraded interface formulation …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian Mar 2018

Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

The electroosmotic flow (EOF) of viscoelastic fluid in a long nanoslit is numerically studied to investigate the rheological property effect of Linear Phan-Thien-Tanner (LPTT) fluid on the fully developed EOF. The non-linear Poisson-Nernst-Planck equations governing the electric potential and the ionic concentration distribution within the channel are adopted to take into account the effect of the electrical double layer (EDL), including the EDL overlap. When the EDL is not overlapped, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. The velocity profile resembles that of pressure-driven flow when the EDL is …


Distal Placement Of An End-To-Side Bypass Graft Anastomosis: A 3d Computational Study, John Di Cicco, Ayodeji Demuren Jan 2013

Distal Placement Of An End-To-Side Bypass Graft Anastomosis: A 3d Computational Study, John Di Cicco, Ayodeji Demuren

Mechanical & Aerospace Engineering Faculty Publications

A three-dimensional (3D) computational fluid dynamics study of shear rates around distal end-to-side anastomoses has been conducted. Three 51% and three 75% cross-sectional area-reduced 6 mm cylinders were modeled each with a bypass cylinder attached at a 30-degree angle at different placements distal to the constriction. Steady, incompressible, Newtonian blood flow was assumed, and the full Reynolds-averaged Navier-Stokes equations, turbulent kinetic energy, and specific dissipation rate equations were solved on a locally structured multiblock mesh with hexahedral elements. Consequently, distal placement of an end-to-side bypass graft anastomosis was found to have an influence on the shear rate magnitudes. For the …


Effect Of Compliant Wall Motion On Turbulent Boundary Layers, Dennis M. Bushness, Jerry N. Hefner, Robert L. Ash Jan 1977

Effect Of Compliant Wall Motion On Turbulent Boundary Layers, Dennis M. Bushness, Jerry N. Hefner, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

A critical analysis of available compliant wall data which indicated drag reduction under turbulent boundary layers is presented. Detailed structural dynamic calculations suggest that the surfaces responded in a resonant, rather than a compliant, manner. Alternate explanations are given for drag reductions observed in two classes of experiments: (1) flexible pipe flows and (2) water-backed membranes in air. Analysis indicates that the wall motion for the remaining data is typified by short wavelengths in agreement with the requirements of a possible compliant wall drag reduction mechanism recently suggested by Langley. Copyright © 1977 American Institute of Physics.