Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Buckling Load Study On Pop Nut (Rivet) Using Finite Element Analysis, Saurabh Shankar Shegokar Jan 2020

Buckling Load Study On Pop Nut (Rivet) Using Finite Element Analysis, Saurabh Shankar Shegokar

Dissertations, Master's Theses and Master's Reports

This study highlights the material behavior in riveting operation that includes buckling load analysis using ABAQUS. Finite Element Analysis is used to find the buckling load vs. Displacement results and validated with the results obtained in physical testing of rivet (POP Nut). A mesh sensitivity study is performed using ABAQUS to understand the optimum mesh size for this analysis. An axisymmetric model with contact properties is created and simulated to reduce the simulation time using ABAQUS. The results obtained through Finite Element Analysis show a good resemblance with the testing results. Design changes were suggested to achieve better results that …


Experimental And Computational Studies Of Heat Transfer In Flexible Two-Dimensional Woven Fiber Ceramic Materials, Rodrigo Penide Fernandez Jan 2020

Experimental And Computational Studies Of Heat Transfer In Flexible Two-Dimensional Woven Fiber Ceramic Materials, Rodrigo Penide Fernandez

Graduate College Dissertations and Theses

Flexible thermal protection materials made from two-dimensional woven ceramics fibers are of significant interest for hypersonic inflatable aerodynamic decelerators being developed by NASA for future missions on Mars and other planets. A key component of the thermal shield is a heat-resistant outer ceramic fabric that must withstand harsh aero-thermal atmospheric entry conditions. However, a predictive understanding of heat conduction processes in complex woven-fiber ceramic materials under deformation is currently lacking. This dissertation presents a combined experimental and computational study of thermal conductivity in alumina-based Nextel-440 and silicon carbide Hi-Nicalon 5-harness-satin woven fabrics, using the hot-disk transient plane source method and …


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai Mar 2019

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the …


Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath Jan 2017

Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath

Dissertations, Master's Theses and Master's Reports

The purpose of this study is to computationally model and analyze a Conformable Compressed Natural Gas (CNG) fuel tank for frontal crashes using Finite Element Analysis. Researchers have developed a CNG fuel tank, which is conformable, non-conventional and non-cylindrical. This tank increases cost efficiency, volumetric efficiency and cargo efficiency in CNG vehicle applications. A lightweight pickup truck (2015 Chevrolet Silverado) has been used to integrate the CNG tanks and field-testing has been conducted to demonstrate the application.

The report mainly focuses on the effective finite element modeling of the chassis, brackets and tanks using HYPERMESH and RADIOSS. The frontal crash …


Finite Element Modeling Of Ballistic Impact On A Glass Fiber Composite Armor, Dan M. Davis Jun 2012

Finite Element Modeling Of Ballistic Impact On A Glass Fiber Composite Armor, Dan M. Davis

Master's Theses

Finite Element Modeling of Ballistic Impact on a Glass Fiber Composite Armor

Dan Davis

Experiments measuring the ballistic performance of a commercially available fiberglass armor plate were used to guide the development of constitutive laws for a finite element model of the impact. The test samples are commercially available armor panels, made from E-glass fiber reinforced polyester rated to NIJ level III. Quasi-static tensile tests were used to establish material properties of the test panels. These properties were then used to create models in the explicit finite element code LSDYNA.

Ballistic impact testing of the panels was conducted using a …


Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu Jan 2012

Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu

Theses and Dissertations--Chemical and Materials Engineering

Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.

The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.

For indentation of a piezoelectric half space, a three-dimensional finite element …