Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

University of Texas at El Paso

2018

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Titanium Incorporated Gallium Oxide (Ga-Ti-O): Structure Property Relationship And Performance Evaluation For Extreme Environment Applications, Sandeep Manandhar Jan 2018

Titanium Incorporated Gallium Oxide (Ga-Ti-O): Structure Property Relationship And Performance Evaluation For Extreme Environment Applications, Sandeep Manandhar

Open Access Theses & Dissertations

The existing power generation systems, which utilize fossil fuels, are in dire need of efficient, reliable chemical sensors that can operate safely at higher temperatures. These sensors control the combustion environment and the emissions during combustion. Several sensing materials such as SnO2, ZnO, TiO2, WO3, and Ga2O3 exhibit high sensitivity to certain type of chemical molecules and in a certain range of temperatures. Among these candidate materials, β-Ga2O3 is stable at very high temperatures and has shown functionality for oxygen sensing at higher temperatures (>700°C). However, the response time and sensitivity must be significantly improved in order to derive …


Tungsten Doping Induced Superior Mechanical Properties Of Hafnium Oxide For Energy Applications, Ann Marie Uribe Jan 2018

Tungsten Doping Induced Superior Mechanical Properties Of Hafnium Oxide For Energy Applications, Ann Marie Uribe

Open Access Theses & Dissertations

Hafnium oxide, or hafnia, is a high temperature refractory material with good electrical, chemical, optical, and thermodynamic properties. The effects of dopants have been widely studied, especially after the discovery of ferroelectricity induced in hafnia thin films. While attractive and used in the opto-electronic, memory devices, and semiconductor industries, there is a lack in the literature on enhancing the mechanical properties of hafnium oxide, specifically through doping it with tungsten, another material of interest particularly for future high temperature device applications. Thus, this work aimed to grow hafnia thin films doped with varying amounts of tungsten. The samples were grown …