Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

The Design And Manufacturing Of An Environmental Chamber To Test Microelectronic Devices, William Graber, Aniket Roy Chowdhury Nov 2022

The Design And Manufacturing Of An Environmental Chamber To Test Microelectronic Devices, William Graber, Aniket Roy Chowdhury

The Journal of Purdue Undergraduate Research

No abstract provided.


Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai Mar 2019

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …


A Parametric Study Of The Mechanics Of Different Skin Flap Techniques, Steven J. Meza, Adrián Tepole Buganza Aug 2017

A Parametric Study Of The Mechanics Of Different Skin Flap Techniques, Steven J. Meza, Adrián Tepole Buganza

The Summer Undergraduate Research Fellowship (SURF) Symposium

In modern day plastic and reconstructive surgeries numerous skin flap designs have been developed and are used to close open wounds. Skin flaps are developed with the intention of imposing minimal tension in skin closure. Excessive tension can lead to poor blood flow that result in post-surgery complications such as necrosis. Currently there is no standard in choosing a skin flap design and a surgeon's choice is based personal experience. A comparison of the mechanical loading in these various designs has not yet been done. We have developed a parametric study, using finite element analysis, of two advancement skin flaps …


Simulation Of Superplastic Forming Of Circular Edge-Welded Envelopes, Olga Tulupova Oct 2016

Simulation Of Superplastic Forming Of Circular Edge-Welded Envelopes, Olga Tulupova

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Simulation Investigation Of Temperature Distribution In Large Aluminium Panel During Autoclave Age Forming Process, Yongqian Xu Oct 2016

Simulation Investigation Of Temperature Distribution In Large Aluminium Panel During Autoclave Age Forming Process, Yongqian Xu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Weld Thermal Simulation Of Crmov With Pwht In Type Iv Region, Bin Xu Oct 2016

Weld Thermal Simulation Of Crmov With Pwht In Type Iv Region, Bin Xu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fatigue Analysis Of The Welded Region In The Automotive Torsion Beam Rear Suspension System, Nan Zhan, Xiaochuan Zhang Oct 2016

Fatigue Analysis Of The Welded Region In The Automotive Torsion Beam Rear Suspension System, Nan Zhan, Xiaochuan Zhang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Flow Stress And Microstructure Models Of Alloys, Lars-Erik Lindgren Oct 2016

Flow Stress And Microstructure Models Of Alloys, Lars-Erik Lindgren

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth Apr 2016

Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth

Open Access Dissertations

The effect of projectile nose geometry on ensuing wave development in high-performance yarns is explored during single yarn transverse impact. Special attention has been placed on visualizing the immediate region around the projectile-yarn contact site for 0.30-cal round, 0.30-cal fragment simulation projectiles (FSP), and razor blades using high-speed imaging. Kevlar® KM2, Dyneema®SK76 and AuTx have been impacted at velocities ranging from ∼100 m/s to ∼1200 m/s depending on projectile nose shape, with an emphasis set on determining the critical velocity wherein below said velocity significant development of wave propagation occurs and above said velocity the yarn fails immediately upon impact. …


Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh Mar 2016

Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh

Open Access Dissertations

Fretting refers to the minute oscillatory motion between two surfaces in contact under an applied normal load. It can cause either surface or subsurface initiated failure resulting in either fatigue or wear or both. Two distinct regimes – partial slip and gross slip are typically observed in fretting contacts. Due to the nature of contact, various factors such as wear debris, oxidation, surface roughness, humidity etc. effect failures caused due to fretting. A number of different techniques have been developed to quantify fretting damage and several numerical models are proposed to predict damage due to fretting. Fretting wear also depends …


Code Optimization For Phase Field Method, Sergio Andres Monsalve, Marisol Koslowski Oct 2013

Code Optimization For Phase Field Method, Sergio Andres Monsalve, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Phase field model method for studying grain dislocation at atomic level after applying an external force to the materials being tested, enables simulate the behavior of different materials after applying stress. With the appropriate numerical method the simulation could change drastically the complexity of the algorithm. Finding the most accurate and stable numerical method for the phase field model give us a considerable improving in the performance of the code used to simulate the phase field dynamic dislocation in larger and more complex simulations can be performed. We made an statistic comparison between the different methods, comparing stability and …


Analysis Of An Actuated Two Segment Leg Model Of Locomotion, Nikhil Vinayak Rao Jan 2013

Analysis Of An Actuated Two Segment Leg Model Of Locomotion, Nikhil Vinayak Rao

Open Access Theses

Research studies on dynamic models of legged locomotion have generally focused on telescoping-type leg models. Such telescoping spring loaded inverted pendulum (SLIP) models have been able to accurately predict observed center of mass (CoM) trajectories. There have been comparatively fewer studies on dynamics of locomotion

with segmented legs. Some earlier studies on the dynamics due to leg segmentation appear straightforward. For example, a simple model with the only joint moment being due to a passive springy knee has been shown to behave similarly to a telescoping spring-mass model. However, in real-life animal locomotion, there are multiple joint-moments acting at the …


Acoustic Emission Detection Of Metals And Alloys During Machining Operations, Jameson K. Nelson Apr 2012

Acoustic Emission Detection Of Metals And Alloys During Machining Operations, Jameson K. Nelson

Purdue Polytechnic Masters Theses

Nelson, Jameson K. M.S., Purdue University, May 2012. Acoustic Emission Detection of Metals and Alloys During Machining Operations. Major Professor: Rodney G. Handy.

Practical correlation between material deformation attributes and theoretical concepts of machining has proven difficult to attain. The purpose of this study was to further explore trends and relationships using acoustic emission detection of materials undergoing single-point lathe turning machine processes. The majority of machining experiments that incorporate acoustic emissions focuses on tool degradation for the purposes of optimizing consumables required to manufacture mechanical devices. Experiments were implemented varying recording location, mechanical barrier condition, and machine parameters. The …


A Digital Hydraulic Valve, Actuated Using A Piezoelectric Linear Motor, Brian C. Bevill Jul 2011

A Digital Hydraulic Valve, Actuated Using A Piezoelectric Linear Motor, Brian C. Bevill

Purdue Polytechnic Directed Projects

Proportional control in hydraulics is widely utilized. The most widely used current types of proportional valves utilize solenoid technology. While this technology has been around for decades and has been proven an effective means of control, there is always a demand for improved performance of advancing technologies. Integrating piezoelectric devices as a means to control hydraulic systems helps advance control for hydraulic systems.

Piezoelectric stack devices have been used to control hydraulic systems with success. Advantages of these stacks include being relatively small with a high power to weight ratio, using less energy than solenoid operations, and being fast acting. …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …