Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Energy Systems

2019

PDF

Theses/Dissertations

Institution
Keyword
Publication

Articles 1 - 30 of 42

Full-Text Articles in Mechanical Engineering

Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick Dec 2019

Characterization And Computational Modelling For The Garnet Oxide Solid State Electrolyte Ta-Llzo, Colin A. Versnick

Electronic Thesis and Dissertation Repository

The all-solid-state-battery (ASSB) serves as a promising candidate for next generation lithium ion batteries for significant improvements in battery safety, capacity, and longevity. Of the material candidates researched to replace the conventionally used liquid electrolyte, the garnet oxide Ta-LLZO (Li6.4La3Zr1.4Ta0.6O12) has received much attention thanks to its high chemical and electrochemical stability, and ionic conductivity which rivals that of liquid electrolytes. While much investigation has taken place regarding the electrochemical performance of Ta-LLZO, much less is known about the micromechanics, including microstructural characterization, stress and strain development, and material failure …


Hvac System Energy Audit For Leverett Elementary School, Connor Smalling Dec 2019

Hvac System Energy Audit For Leverett Elementary School, Connor Smalling

Biological and Agricultural Engineering Undergraduate Honors Theses

Leverett Elementary School is located in Fayetteville, AR. The school needs significant upgrades to its infrastructure. The Fayetteville Public School District has voted to pursue an Energy Services Performance Contract (ESPC) in order to finance the desired upgrades to Leverett Elementary, among other schools in the district.

The scope of this thesis was to perform an energy audit on the existing heating, ventilation, and air conditioning (HVAC) system. By using an energy modeling software, eQuest, the building and the existing base system were modeled to determine utility consumption. Three different HVAC system alternatives were analyzed against the base system by …


Assessment Of Ammonia Ignition As A Maritime Fuel, Using Engine Experiments And Chemical Kinetic Simulations, Abubakar Mahmud Sheriff, Abdoulaye Tall Nov 2019

Assessment Of Ammonia Ignition As A Maritime Fuel, Using Engine Experiments And Chemical Kinetic Simulations, Abubakar Mahmud Sheriff, Abdoulaye Tall

World Maritime University Dissertations

No abstract provided.


Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park Oct 2019

Structural Control Of Offshore Wind Turbines Using Passive And Semi-Active Control, Semyung Park

Doctoral Dissertations

Offshore wind energy has the potential to generate substantial electricity production compared to onshore locations, due to the high-quality wind resource. Offshore wind turbines must endure severe offshore environmental conditions and be cost effective, in order to be sustainable. As a result, load mitigation becomes crucial in successfully enabling deployment of offshore wind turbines. A direct approach to reduce loads in offshore wind turbines is the application of structural control techniques. So far, the application of structural control techniques to offshore wind turbines has shown to be effective in reducing fatigue and extreme loads of turbine structures. However, the majority …


Understanding Of The Ship Design Energy Efficiency And Its Implications In Practice, Haichao Yuan Aug 2019

Understanding Of The Ship Design Energy Efficiency And Its Implications In Practice, Haichao Yuan

Maritime Safety & Environment Management Dissertations (Dalian)

No abstract provided.


Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada Aug 2019

Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada

Boise State University Theses and Dissertations

Thermostatically Controlled Loads (TCLs) have shown great potential for Demand Response (DR) events. However, it has been commonly seen that DR events using TCLs may cause demand rebound, especially in homogeneous populations. To further explore the potential for DR events, as well as the negative effects, a stability and resilience analysis were performed on multiple populations and verified with agent based modeling simulations.

At the core of this study is an added thermostat criterion created from the combination of a proportional gain and the average compressor operating state of neighboring TCLs. Where DR events in TCLs are commonly controlled by …


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis, …


Heat: Hydraulic And Electric Animation Team, Tyler J. Couvrette, Michael J. Cain, Sara T. Novell, Dexter K. Yanagisawa Jun 2019

Heat: Hydraulic And Electric Animation Team, Tyler J. Couvrette, Michael J. Cain, Sara T. Novell, Dexter K. Yanagisawa

Mechanical Engineering

Each New Years’ Day, the Cal Poly Rose Float presents a flower-covered float to the world at the Tournament of Roses parade. This floral display, paired with moving mechanical animations, shows off Cal Poly to the world. This project strove to keep Cal Poly on the cutting edge of technology both in parade floats, and in engineering, by creating a completely electric-powered animation system.

To accomplish this, a group of students set out to make the fully electric animation system that can power both the hydraulic and electric mechanisms on the Float. This was accomplished through months of planning and …


Dynamic Behavior And Performance Of Different Types Of Multi-Effect Desalination Plants, Mohamed Abdelkareem May 2019

Dynamic Behavior And Performance Of Different Types Of Multi-Effect Desalination Plants, Mohamed Abdelkareem

Electronic Theses and Dissertations

Water and energy are two of the most vital resources for the socio-economic development and sustenance of humanity on earth. Desalination of seawater has been practiced for some decades and is a well-established means of water supply. However, this process consumes large amounts of energy and the global energy supply is also faced with some challenges. In this research, multi-effect desalination (MED) has been selected due to lower cost, lower operating temperature and efficient in terms of primary energy and electricity consumption compared to other thermal desalination systems. The motivation for this research is to address thermo-economics and dynamic behavior …


Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz May 2019

Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz

Mechanical Engineering

This final design review document outlines the senior design project carried out by a team of four mechanical engineering students at the California Polytechnic State University – San Luis Obispo under the sponsorship of Dr. Peter Schwartz of the Cal Poly Physics department. The aim of this project was to improve upon the design of previously developed Insulated Solar Electric Cookers (ISECs) by adding a thermal storage system to allow for quicker cook times and the ability to cook food at non-peak solar hours. The team’s goal was to develop a working prototype utilizing a phase change medium as the …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Challenges And Opportunities Of Layered Cathodes Of Linixmnyco(1-X-Y)O2 For High-Performance Lithium-Ion Batteries, Jason Frank May 2019

Challenges And Opportunities Of Layered Cathodes Of Linixmnyco(1-X-Y)O2 For High-Performance Lithium-Ion Batteries, Jason Frank

Mechanical Engineering Undergraduate Honors Theses

High energy density lithium-ion batteries (LIBs) are widely demanded for portable electronic devices and electrical vehicles. Layered-structure LiCoO2 oxide (LCO) has been the most commonly used cathode material in commercial LIBs. Compared to LCO, LiNi1-x-yMnxCoyO2 (NMC) cathodes are particularly attractive due to their reduced cost and higher capacity. Among the NMC cathodes, nickel-containing LiNi0.5Co0.3Mn0.2O2 (NMC532) is one of the most promising cathode materials undergoing intensive investigation, but suffers from a series of technical issues, such as structural instability, performance fading, and safety issues. In this …


Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena May 2019

Lithium Molybdate-Sulfur Battery., Ruchira Ravinath Dharmasena

Electronic Theses and Dissertations

Rechargeable energy storage systems play a vital role in today’s automobile industry with the emergence of electric vehicles (EVs). In order to meet the targets set by the department of energy (DOE), there is an immediate need of new battery chemistries with higher energy density than the current Li- ion technology. Lithium–sulfur (Li–S) batteries have attracted enormous attention in the energy-storage, due to their high specific energy density of 2600 Wh kg-1 and operational voltage of 2.0 V. Despite the promising electrochemical characteristics, Li-S batteries suffer from serious technical challenges such as dissolution of polysulfides Li2Sx …


Bgaas Alloy Semiconductors For Lasers On Silicon, Joshua Mcarthur May 2019

Bgaas Alloy Semiconductors For Lasers On Silicon, Joshua Mcarthur

Mechanical Engineering Undergraduate Honors Theses

In the world of semiconductors today, there is a large dissonance between optical devices and electrical application. Due to the limitations of electron transport, photonic integrated circuits are soon-to-be vital in fields like telecommunications and sensing. Right now, these PIC’s are mostly made from indium phosphide. Due to its ubiquitous nature, however, there is a huge push to integrate efficient optics with silicon. It’s cheap, abundant, dope-able, and our electronic infrastructure is based on it. The reason why silicon photonics aren’t already commercialized is because of silicon’s indirect bandgap—it is inefficient with optical applications. The problem with combining direct gap …


Design & Evaluation Of Cooling Systems For Photovoltaic Modules, Peter Leary Apr 2019

Design & Evaluation Of Cooling Systems For Photovoltaic Modules, Peter Leary

Honors Theses

There is a persistent need for further development and implementation of renewable energy sources, such as wind and solar. Due to the increase in global population, the disappearance of fossil fuels, and the reality of climate change, renewable power is needed now more than ever. One such renewable power technology is solar photovoltaic, otherwise known as PV. These modules work via silicon cells which are as semiconductors, outputting electrical energy when incident with solar radiation. This is done by separating electrons and protons within the cell. One of the largest issues with PV technology is that there is a linear …


Thermodynamic And Economic Analysis Of Several Hybrid Multigeneration Cycles And Waste Heat Recovery Systems Driven By Concentrated Solar Tower, Kasra Mohammadi Mar 2019

Thermodynamic And Economic Analysis Of Several Hybrid Multigeneration Cycles And Waste Heat Recovery Systems Driven By Concentrated Solar Tower, Kasra Mohammadi

Doctoral Dissertations

In recent decades, growth in the world population, economic and living standards have been responsible for substantial increases in global energy consumption. Moreover, exploitation of fossil fuels to supply energy demands has led to global climate change, which is expected to have far-reaching and long-lasting consequences on the planet. These factors have motivated the importance and necessity of developing more efficient ways for energy conservation and generation that avoid the production of greenhouse gases that contribute to climate change. One method to address these issues is to develop combined production such as multigeneration for simultaneous production of electricity, cooling, fresh …


Ammonia Production From A Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review, Vismay V. Parmar Mar 2019

Ammonia Production From A Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review, Vismay V. Parmar

Masters Theses

According to U.S. Department of Energy, offshore wind energy has the potential to generate 7,200 TWh of energy annually, which is nearly twice the current annual energy consumption in the United States. With technical advances in the offshore wind industry, particularly in the floating platforms, windfarms are pushing further into the ocean. This creates new engineering challenges for transmission of energy from offshore site to onshore. One possible solution is to convert the energy produced into chemical energy of ammonia, which was investigated by Dr. Eric Morgan. In his doctoral dissertation, he assessed the technical requirements and economics of a …


Stair Climbing Hand Truck, James Mcpherson Jan 2019

Stair Climbing Hand Truck, James Mcpherson

All Undergraduate Projects

Abstract

Getting a heavy object up a flight of stairs usually requires a team of two or more people. Even with a team of people, the task is often still difficult, dangerous, and possibly insurmountable by one person. This problem is especially prevalent in for those who are moving into apartment complexes. Most apartment complexes have many buildings with two or more floors of living quarters, and elevators are often missing. This project sought to offer a solution to this problem. The solution in question; a motorized hand-truck with 2, trigonal planar pinwheels in place of the stock wheels. The …


Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn Jan 2019

Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn

Mechanical Engineering

In this Final Design Review, the team outlines the general scope of the ARES Cleaning System project and the final design direction chosen and built. This team consists of a group of four mechanical engineering students who have been tasked with designing and manufacturing an autonomous ARES cleaning system to help their sponsor, Fracsun, better track soiling losses measured at large solar arrays. They designed, conceptualized, manufactured, and tested throughout the project as they looked to create a final, functioning product. In creating this Final Design Review, they have identified how the product will perform the desired functions and what …


Modeling And Study Of Thermal Effects On Battery Pack Using Phase Change Materials, Umang Selokar Jan 2019

Modeling And Study Of Thermal Effects On Battery Pack Using Phase Change Materials, Umang Selokar

Electronic Theses and Dissertations

The scope of the current research is to reduce the temperature distribution area in Li-ion cell and the battery pack with respect to time in battery design, using CFD technology (Computational Fluid Dynamics) in ANSYS fluent. A 3D model was design in CAD software (CATIA) and analyzed in ANSYS fluent to study the thermal behavior of the designed battery pack. An analytical thermal model was generated to evaluate the heat generation rate passing throughout the battery pack. The battery pack were analyzed and simulated on two different designs. One battery design is modeled with and without insulation (superwool EST compression …


Optimization And Comparison Of Over-Expanded And Other High Efficiency Four-Stroke Spark-Ignited Boosted Engines, Zhuyong Yang Jan 2019

Optimization And Comparison Of Over-Expanded And Other High Efficiency Four-Stroke Spark-Ignited Boosted Engines, Zhuyong Yang

Dissertations, Master's Theses and Master's Reports

Recent fuel economy and emission regulations are the major concern of the research and development of modern internal combustion engine. Such technologies include variable valve timing (VVT), direct injection (DI), turbocharging, downsizing, and over-expanded cycle are used by many manufacturers to improve engine fuel economy or increase power density.

Current Atkinson cycle technology in the production engine is mainly realized by an advanced valvetrain system to reduce the effective compression ratio while maintaining the same expansion ratio. Another approach to realize over-expanded cycle engine is to utilize a multi-link cranktrain mechanism. Although the Atkinson cycle was originally patented in the …


A Hybrid-Powered Wireless System For Multiple Biopotential Monitoring, Shawn Li Jan 2019

A Hybrid-Powered Wireless System For Multiple Biopotential Monitoring, Shawn Li

Dissertations, Master's Theses and Master's Reports

Chronic diseases are the top cause of human death in the United States and worldwide. A huge amount of healthcare costs is spent on chronic diseases every year. The high medical cost on these chronic diseases facilitates the transformation from in-hospital to out-of-hospital healthcare. The out-of-hospital scenarios require comfortability and mobility along with quality healthcare. Wearable electronics for well-being management provide good solutions for out-of-hospital healthcare. Long-term health monitoring is a practical and effective way in healthcare to prevent and diagnose chronic diseases. Wearable devices for long-term biopotential monitoring are impressive trends for out-of-hospital health monitoring. The biopotential signals in …


Influence Of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values And Flow Parameters – For High Heat-Flux Flow Boiling Of Water, Soroush Sepahyar Jan 2019

Influence Of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values And Flow Parameters – For High Heat-Flux Flow Boiling Of Water, Soroush Sepahyar

Dissertations, Master's Theses and Master's Reports

Analysis of results from steady and steady-in-the-mean high heat-flux (15 - 70 W/cm2, with water as working fluid) shear driven annular flow-boiling experiments presented here - and low heat-flux (0.1- 1 W/cm2, with FC-72 as working fluid) experiments presented elsewhere – together lead to a key conclusion. The conclusion is that heat carrying nucleation rates go often undetected by the typically used visualization approaches for flow boiling – as such flows often involve µm- to sub- µm scale bubble diameters in millimeter-scale ducts. These nucleation rates play a significant role in most of the so-called convective …


Modeling Of Thermal Dynamics In Chevrolet Volt Gen Ii Hybrid Electric Vehicle For Integrated Powertrain And Hvac Optimal Operation Through Connectivity, Nehal Doshi Jan 2019

Modeling Of Thermal Dynamics In Chevrolet Volt Gen Ii Hybrid Electric Vehicle For Integrated Powertrain And Hvac Optimal Operation Through Connectivity, Nehal Doshi

Dissertations, Master's Theses and Master's Reports

Integrated thermal energy management across system level components in electric vehicles (EVs) and hybrid electric vehicles (HEVs) is currently an under explored space. The proliferation of connected vehicles and accompanying infrastructure in recent years provides additional motivation to explore opportunities in optimizing thermal energy management in EVs and HEVs with the help of this newly available connected vehicle data. This thesis aims to examine and analyze the potential to mitigate vehicle energy consumption and extend usable driving range through optimal control strategies which exploit physical system dynamics via controls integration of vehicle subsystems.

In this study, data-driven and physics-based models …


Networked Microgrid Optimization And Energy Management, Robert S. Jane Jan 2019

Networked Microgrid Optimization And Energy Management, Robert S. Jane

Dissertations, Master's Theses and Master's Reports

Military vehicles possess attributes consistent with a microgrid, containing electrical energy generation, storage, government furnished equipment (GFE), and the ability to share these capabilities via interconnection. Many military vehicles have significant energy storage capacity to satisfy silent watch requirements, making them particularly well-suited to share their energy storage capabilities with stationary microgrids for more efficient energy management. Further, the energy generation capacity and the fuel consumption rate of the vehicles are comparable to standard diesel generators, for certain scenarios, the use of the vehicles could result in more efficient operation. Energy management of a microgrid is an open area of …


Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik Jan 2019

Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik

Dissertations, Master's Theses and Master's Reports

This work is focused on the fundamental understanding and the development of paddle mixer reactors (or modified screw augers). This work will contribute to the effort of the thermal conversion of biomass and wastes. We developed and studied two paddle systems (i) 25-mm lab-scale (up to 1 kg/hr) and (ii) 101-mm pilot-scale (up to 100 kg/hr). Thermal behavior of the two systems was studied and it was estimated that the lab-scale system has a high heating rate of up to 530 °C/s. Residence times were thoroughly measured and were determined as a function of rotation frequency and volume fraction. We …


Development Of A Fused Deposition 3d Printed Buoy And Method For Quantifying Wave Tank Reflections, Samantha G. Swartzmiller Jan 2019

Development Of A Fused Deposition 3d Printed Buoy And Method For Quantifying Wave Tank Reflections, Samantha G. Swartzmiller

Dissertations, Master's Theses and Master's Reports

Testing model scale prototypes is integral to the development of wave energy converter (WEC) technology. Model scale WECs are tested in wave tanks where they are subjected to repeatable wave fields. Their presence in water creates radiated waves that eventually reflect off tank walls disrupting the intended wave field. Fabrication of model scale WECs is another developing aspect of tank testing. Often model WECs are built of foam. Additive manufacturing is a promising alternative although the most common method, fused deposition modeling (FDM) 3D printing, does not typically produce waterproof parts. The goals of this work were 1) develop a …


Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu Jan 2019

Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu

Dissertations, Master's Theses and Master's Reports

Wave Energy Converter Array is a practical approach to harvest ocean wave energy. To leverage the potential of the WEC array in terms of energy extraction, it is essential to have a properly designed array configuration and control system. This thesis explores the optimal configuration of Wave Energy Converters (WECs) arrays and their optimal control. The optimization of the WEC array allows both dimensions of individual WECs as well as the array layout to varying. In the first optimization problem, cylindrical buoys are assumed in the array where their radii and drafts are optimization parameters. Genetic Algorithms are used for …


Laser Ablation Of Aluminum, Erika Nosal, Zachary Rahe, Arthur Pamboukis Jan 2019

Laser Ablation Of Aluminum, Erika Nosal, Zachary Rahe, Arthur Pamboukis

Williams Honors College, Honors Research Projects

The laser ablation of metal carries relevance in a variety of engineering industries. This includes, but is not limited to, processes such as micromachining, or implementation on aircraft weaponry. The latter application is the reasoning for why aluminum is the specific metal in consideration, as it is commonly used for the construction of aircraft components.

The scope of this project was to optimize the energy dispersed through laser ablation on aluminum by mathematical modeling. The transient conduction process in the aluminum was modeled using a 2-dimensional cylindrical coordinate system in both MATLAB and ANSYS/Fluent. These models were adopted to simulate …


Flow Fields Past Grain Bins As It Relates To Vertical Axis Wind Turbine Placement Optimization, Jon Richter Jan 2019

Flow Fields Past Grain Bins As It Relates To Vertical Axis Wind Turbine Placement Optimization, Jon Richter

All Graduate Theses, Dissertations, and Other Capstone Projects

This thesis studies the 3D flow field of grain bins as it relates to Vertical Axis Wind Turbine (VAWT) placement. Numerical CFD simulations using ANSYS FLUENT were created and validated with the Minnesota State University, Mankato water channel. It was found that the best speed-up regions were on the outer most sides of the models, closest to the walls of the water channel. The model that is furthest upwind in the group has the best speed-up velocity. As the models become closer together, an asymmetric flow field develops. VAWT placement between the models for any case researched is not recommended. …