Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Heat Transfer Analysis In A Paddle Reactor For Biomass Fast Pyrolyis, Ankith Ullal Jan 2017

Heat Transfer Analysis In A Paddle Reactor For Biomass Fast Pyrolyis, Ankith Ullal

Dissertations, Master's Theses and Master's Reports

Heat transfer analysis was performed on a novel auger reactor for biomass fast pyrolysis. As part of this analysis, correlations for specific heat capacity and heat transfer coefficients for biomass (sawdust) and sand (used as heat transfer medium) were developed. For sand, the heat transfer coefficient followed a power law distribution with reactor fill level and temperature. For raw biomass, the heat transfer coefficient also showed similar dependence on fill level, but was independent of temperature up to 300°C. These correlations were used in a one dimensional heat transfer model developed to calculate the heating time and heating rate of …


A Study Of High Temperature Heat Pipes And The Impact Of Magnetic Field On The Flow Of Liquid Metal, Udit Sharma Jan 2017

A Study Of High Temperature Heat Pipes And The Impact Of Magnetic Field On The Flow Of Liquid Metal, Udit Sharma

Dissertations, Master's Theses and Master's Reports

A study of high temperature heat pipe was conducted to understand its characteristics. A review of working fluid, temperature, wick structure, problems, operational limit and applications was done. Alkali metal were concluded as the most viable candidate for the working fluid.

The impact of three parameters namely magnetic field, heat flux and temperature was analyzed on the performance of HTHP (High Temperature Heat Pipe). The presence of magnetic field had the most considerable impact on reducing the pumping limit of the heat pipe while the temperature had almost negligible effect. Magnetic field results in the pressure drop and adversely affect …


Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad Jan 2017

Model-Based Control Of Hybrid Electric Powertrains Integrated With Low Temperature Combustion Engines, Ali Soloukmofrad

Dissertations, Master's Theses and Master's Reports

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle’s fuel conversion efficiency, compared to conventional hybrid electric vehicles (HEV)s. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and nitrogen oxides (NOx) emissions, compared to conventional compression ignition and spark ignition (SI) engines. This dissertation concentrates on integrating the LTC engines (i) in …


The Role Of Active Flow-Control Devices In The Dynamic Aeroelastic Response Of Wind Turbine Rotors, Muraleekrishnan Menon Menon Muraleedharan Nair Jan 2017

The Role Of Active Flow-Control Devices In The Dynamic Aeroelastic Response Of Wind Turbine Rotors, Muraleekrishnan Menon Menon Muraleedharan Nair

Dissertations, Master's Theses and Master's Reports

The significance of wind as a renewable source of power is growing with the increasing capacity of individual utility-scale wind turbines. Contemporary wind turbines are capable of producing up to 8 MW and consequently, their rotor sizes are rapidly growing in size. This has led to an increased emphasis on studies related to improvements and innovations in load-control methodologies. Most often than not, controlling the loads on an operational turbine is a precarious scenario, especially under high wind loading. The up-scaling of turbine rotors would thus benefit from a rationale change in load control through methodologies such as variable-speed stall, …


Impact Of Natural Gas Direct Injection On Thermal Efficinecy In A Spark Ignition Engine, James Sevik Jan 2017

Impact Of Natural Gas Direct Injection On Thermal Efficinecy In A Spark Ignition Engine, James Sevik

Dissertations, Master's Theses and Master's Reports

Interest in natural gas as an internal combustion engine fuel has been renewed due to its increasing domestic availability and stable price relative to other petroleum fuel sources. Natural gas, comprised mainly of methane, allows for up to a 25% reduction in engine out CO2 emissions due to a more favorable hydrogen-to-carbon ratio, relative to traditional petroleum sources. Traditional methods of injecting natural gas can lead to poor part-load performance, as well as a power density loss at full load due to air displacement in the intake manifold. Natural gas direct injection, which allows the fuel to be injected directly …


Modeling Mass And Thermal Transport In Thin Porous Media Of Pem Fuel Cells, Vinaykumar Konduru Jan 2017

Modeling Mass And Thermal Transport In Thin Porous Media Of Pem Fuel Cells, Vinaykumar Konduru

Dissertations, Master's Theses and Master's Reports

Water transport in the Porous Transport Layer (PTL) plays an important role in the efficient operation of polymer electrolyte membrane fuel cells (PEMFC). Excessive water content as well as dry operating conditions are unfavorable for efficient and reliable operation of the fuel cell. The effect of thermal conductivity and porosity on water management are investigated by simulating two-phase ow in the PTL of the fuel cell using a network model. In the model, the PTL consists of a pore-phase and a solid-phase. Different models of the PTLs are generated using independent Weibull distributions for the pore-phase and the solid-phase. The …


The Impact Of Water Injection On Spark Ignition Engine Performance Under High Load Operation, Jeremy Worm Jan 2017

The Impact Of Water Injection On Spark Ignition Engine Performance Under High Load Operation, Jeremy Worm

Dissertations, Master's Theses and Master's Reports

An experimental effort has been completed in which water injection was investigated as a means of enabling increases in engine output and high load efficiency. Water was injected into the intake port of a direct fuel injected, 4-cylinder, boosted engine with dual independent variable valve timing. The water was shown to increase volumetric efficiency and decrease the onset of knock which in turn enable more optimal combustion phasing. Both of these affects resulted increases in load of up to 5.5% at the same manifold pressure as the baseline case. The advancement of combustion phasing, combined with elimination of fuel enrichment …


Development Of A High-Fidelity Model And Kalman Filter Based State Estimator For Simulation And Control Of Nox Reduction Performance Of A Scr Catalyst On A Dpf, Venkata Rajesh Chundru Jan 2017

Development Of A High-Fidelity Model And Kalman Filter Based State Estimator For Simulation And Control Of Nox Reduction Performance Of A Scr Catalyst On A Dpf, Venkata Rajesh Chundru

Dissertations, Master's Theses and Master's Reports

Reduction of emissions and improving the fuel consumption are two prime research areas in Diesel engine development. The present after-treatment systems being used for emissions control include diesel oxidation catalyst (DOC) for NO, HC and CO oxidation along with catalyzed particulate filters for PM (particulate matter) and selective catalytic reduction (SCR) for controlling NOx emissions. Recently an after-treatment system called SCR catalyst on a DPF capable of simultaneously reducing both NOx and PM emissions has been developed in order to reduce the overall size of the after-treatment system.

The goal of this proposed research is to create a state estimator …