Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

The Capabilities And Limitations Of Flywheel-Based Energy Storage System Pertaining To Subways In The Event Of A Power Outage, Jaskaran Singh Jan 2022

The Capabilities And Limitations Of Flywheel-Based Energy Storage System Pertaining To Subways In The Event Of A Power Outage, Jaskaran Singh

Dissertations and Theses

In the city that never sleeps, power outages or blackouts can be a shock, especially if you are on a train amid one. For example, during the infamous 2003 blackout, thousands of people were left stuck and stranded in parts of Northeastern United States. In particular, with no trains or buses in service throughout the 5 boroughs of NYC, those stranded essentially had no way to go back home. Hotels, terminals, and airports alike became places of camping as the city seemed to come to a halt. For the sake of public safety and transit efficiency, this study explores a …


The Impact Of Covid-19 On Building Energy Consumption In New York City, Martha A. Olaleye Jan 2022

The Impact Of Covid-19 On Building Energy Consumption In New York City, Martha A. Olaleye

Dissertations and Theses

Since February 2020, the spread of COVID-19 affected the world economy, with the population of people contacting the virus in New York City at that time being at the highest in the United States of America. Thus, the need for remote/online learning was adopted for the safety of faculty, staffs, and students of New York Educational institution like CCNY. In the study, I focused on energy consumption as regards to COVID and POST-COVID periods in New York City (NYC), since most employees are working from home and schools are online which implies that most commercial buildings are vacant. Also due …


Adapting To Extreme Heat: Social, Atmospheric, And Infrastructure Impacts Of Air Conditioning In Megacities - The Case Of New York City, Harold Gamarro Jan 2020

Adapting To Extreme Heat: Social, Atmospheric, And Infrastructure Impacts Of Air Conditioning In Megacities - The Case Of New York City, Harold Gamarro

Dissertations and Theses

Extreme heat events are becoming more frequent and intense in most large cities. Built-up surfaces also limit cooling mechanisms, leading to warmer conditions in cities, a phenomenon called the Urban Heat Island (UHI). This presents major challenges to reduce adverse health effects of hot weather, particularly in vulnerable populations like the elderly and low-income communities. Here we explore the overall impacts of increasing air conditioning (AC) system adoption in residences as an adaptive measure to reduce human health risks under heat waves, with New York City (NYC) as a case study. This study uses AC adoption data from the 2017 …


On The Energy Sustainability Of Active And Passive Building Integrated Technologies In The Context Of A Changing Climate For Tropical Coastal Cities, Rabindra Pokhrel Jan 2020

On The Energy Sustainability Of Active And Passive Building Integrated Technologies In The Context Of A Changing Climate For Tropical Coastal Cities, Rabindra Pokhrel

Dissertations and Theses

Caribbean Sea surface temperatures have been rising at an alarming rate of 0.020C/year. The effect of rising sea surface temperatures is reflected in increasing in 2m air temperature over the Caribbean. The rise in extreme temperatures increases human discomfort and energy demands for air conditioning (AC) putting both the population and energy infrastructure at higher risk of vulnerability. This vulnerability is amplified in compact cities where anthropogenic heat removal from the built environment further increases the temperature of the urban canyon with feedback on human comfort and energy demands. Although there has been prior work reported on mitigating energy demands …


Capillary Forces And Wetting Dynamics By Diffuse-Interface Modeling, Fanny Thomas Jan 2020

Capillary Forces And Wetting Dynamics By Diffuse-Interface Modeling, Fanny Thomas

Dissertations and Theses

Wetting phenomena underlie many natural and industrial processes, from the proper functioning of the lungs to the thin coating of surfaces. The three-phase interactions involved at microscopic scales play a critical role. Adding solid particles to an emulsion, for example, can drastically change the flow behavior due to capillary bridging between the particles. The study of these three-phase systems is especially relevant to the petroleum industry, where gas hydrates forming large clusters in subsea pipelines during crude oil transportation is a major concern. The dynamics of such systems is also of great interest from a fundamental perspective. Indeed describing non-equilibrium …


Literature Survey Of Wet-Waste And Hydrothermal Carbonization System: A Comparative Evaluation, Ramat Olaide Yusuf Jan 2019

Literature Survey Of Wet-Waste And Hydrothermal Carbonization System: A Comparative Evaluation, Ramat Olaide Yusuf

Dissertations and Theses

This thesis describes the process of Hydrothermal carbonization and a comparative assessment on recent work done on the process using different feedstocks such as Raw Apple (RA), Apple chip pomace (ACP), apple juice pomace (AJP), grape pomace (GP), macadamia nut-shell (MNS), Sewage Sludge (SS), Poultry Litter (PL) and Grape Marc (GM). The data obtained from the literature survey was compared with the data obtained by the CCL team on the SWPS gasifier (HTC of poultry litter) to obtain how carbon conversion efficiency, syngas composition, thermal efficiency, char production rate, gas production rate and energy utilization vary with carbonization process conditions, …


Smart Prismatic Louver Technology For Enhanced Daylighting And Management Of Thermal Loads In Green Buildings, Michael Alva Jan 2018

Smart Prismatic Louver Technology For Enhanced Daylighting And Management Of Thermal Loads In Green Buildings, Michael Alva

Dissertations and Theses

Abstract

Two significant design strategies for mitigating building energy consumption are daylight redirection and solar energy harvesting. Good daylighting implementation enhances the amount of useful natural light within a space, thereby offsetting the need for electric lighting. Solar energy harvesting systems can mitigate energy costs from mechanical systems by managing incoming thermal loads or capturing solar energy that can be used to supplement thermal systems in the building. While there are many available façade-based technologies that can perform daylighting or solar thermal energy harvesting, there remains a limitation in available systems that can perform both simultaneously. The proposed Liquid Filled …