Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Solute Concentration Effects On Microstructure And The Compressive Strength Of Ice-Templated Sintered Lithium Titanate, Rohan Parai, Ziyang Nie, Raina Hempley, Gary M. Koenig Jr., Dipankar Ghosh Jan 2022

Solute Concentration Effects On Microstructure And The Compressive Strength Of Ice-Templated Sintered Lithium Titanate, Rohan Parai, Ziyang Nie, Raina Hempley, Gary M. Koenig Jr., Dipankar Ghosh

Mechanical & Aerospace Engineering Faculty Publications

This work investigated the role of sucrose and cationic dispersant (1‐hexadecyl)trimethylammonium bromide concentration on ice‐templated sintered lithium titanate microstructure and compressive strength, to enable a comprehensive understanding of composition selection and elucidate processing–microstructure–mechanical property relationships. Sucrose and dispersant concentrations were varied to change total solute concentration in suspensions and viscosity. Dispersant was more effective in reducing viscosity than sucrose; however, their combination had an even greater impact on reducing viscosity. Based on viscosity measurements, a total of 12 suspension compositions were developed, and materials were fabricated at two different freezing front velocity (FFV) regimes. Solute concentration greatly influenced ice‐templated microstructure …


Assembly Of Alumina Particles In Aqueous Suspensions Induced By High‐Frequency Ac Electric Field, James E. John, Shizhi Qian, Dipankar Ghosh Jan 2022

Assembly Of Alumina Particles In Aqueous Suspensions Induced By High‐Frequency Ac Electric Field, James E. John, Shizhi Qian, Dipankar Ghosh

Mechanical & Aerospace Engineering Faculty Publications

The role of high-frequency alternating current (AC) electric field in the assembly of alumina particles in aqueous media was investigated. Field–particle interactions were in situ investigated for coarse and fine powder particles in very dilute suspensions. For both coarse and fine particles, AC field-induced assembly led to the formation of chains of particles within a minute, which were aligned in the field direction. However, a much finer network of particle chains evolved in fine particle suspensions. Threshold field strength for chain formation was also lower for fine particles (28 V/mm) than for coarse particles (50 V/mm), suggesting stronger interactions for …