Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Machine Learning Augmentation Micro-Sensors For Smart Device Applications, Mohammad H. Hasan Nov 2020

Machine Learning Augmentation Micro-Sensors For Smart Device Applications, Mohammad H. Hasan

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Novel smart technologies such as wearable devices and unconventional robotics have been enabled by advancements in semiconductor technologies, which have miniaturized the sizes of transistors and sensors. These technologies promise great improvements to public health. However, current computational paradigms are ill-suited for use in novel smart technologies as they fail to meet their strict power and size requirements. In this dissertation, we present two bio-inspired colocalized sensing-and-computing schemes performed at the sensor level: continuous-time recurrent neural networks (CTRNNs) and reservoir computers (RCs). These schemes arise from the nonlinear dynamics of micro-electro-mechanical systems (MEMS), which facilitates computing, and the inherent ability …


Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman Aug 2017

Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Agricultural researchers are constantly attempting to generate crops superior to those currently in use by the world. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering on their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of …


Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman Aug 2017

Design And Experimentation Of Cable-Driven Platform Stabilization And Control Systems, Matthew Newman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Agricultural researchers are constantly attempting to generate crops superior to those currently in use by the world. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering on their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of …


Safer Sweep Auger Operation Using Robotics, Nathan A. Wulf May 2017

Safer Sweep Auger Operation Using Robotics, Nathan A. Wulf

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents a remotely controlled robotic solution for those who must sometimes enter agriculturally confined spaces in attempts to assist with grain bin cleanout, particularly by manipulating the sweep auger. In 2015 alone, there were at least 47 documented incidents that occurred in agriculturally confined spaces, of which more than half were fatal. While there have been several advancements in the quality and effectiveness of sweep augers, there have been very few that offer the safety and adaptability of the robotic solution proposed. This robotic solution is a four-wheeled, skid-steering style robot with camera and lighting attachments that allow …


Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield Mar 2017

Formation Of Mound-Like Multiscale Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Alfred Tsubaki, Craig A. Zuhlke, Ryan Bell, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Surface Functionalization Technique • Femtosecond Laser Surface Processing (FLSP) • Utilize high power, femtosecond (10-15 s) laser pulses • Produce self-organized, multiscale surface micro/nanostructures • Diverse range of applicable substrates: semiconductors, metals, polymers, & composites

Why? • What are the different types of FLSP structures on Ti? • Physical evidence needed for FLSP formation models • Optimize FLSP of Ti for biomedical & other applications

How? • Obtain evidence of mound growth processes by examining underlying microstructure • Utilize dual beam Scanning Electron Microscope-Focused Ion Beam instrument to cross section surface structures & fabricate transmission electron microscopy samples


Design, Testing And Evaluation Of Robotic Mechanisms And Systems For Environmental Monitoring And Interaction, James K. Higgins Aug 2016

Design, Testing And Evaluation Of Robotic Mechanisms And Systems For Environmental Monitoring And Interaction, James K. Higgins

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their …


Fluid Powered Miniature In-Vivo Robots For Minimally Invasive Surgery (Mis), Abolfazl Pourghodrat Aug 2014

Fluid Powered Miniature In-Vivo Robots For Minimally Invasive Surgery (Mis), Abolfazl Pourghodrat

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Minimizing the invasiveness of surgery is believed to improve patient outcomes. Bleeding, infection, and pain are major concerns in surgery afflicting patients for decades. Minimally invasive techniques have come into play to reduce these concerns and smooth the evolution of abdominal surgery to a scarless process where nearly all surgeries can be performed without a skin incision. Technology continually advances the frontier of development of novel surgical devices to implement less invasive surgical techniques.

Fusion of robotics and Minimally Invasive Surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems …


Towards A Sustainable Modular Robot System For Planetary Exploration, S. G. M. Hossain Apr 2014

Towards A Sustainable Modular Robot System For Planetary Exploration, S. G. M. Hossain

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual …


Measurement And Description Of Dynamics Required For In Vivo Surgical Robotics Via Kinematic Methods, Jacob G. Greenburg Aug 2013

Measurement And Description Of Dynamics Required For In Vivo Surgical Robotics Via Kinematic Methods, Jacob G. Greenburg

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

With the goal of improved recovery times and reduced trauma to the patient there has been a substantial shift in the medical community’s demand for minimally invasive surgical (MIS) techniques. With the standardization of MIS becoming more commonplace in the medical field there are still many improvements that are desired. Traditional, manual methods of these surgeries require multiple incisions on the abdomen for the tools and instruments to be inserted. The more recent demand has been to localize the incisions into what is being referred to as a Laparoendoscopic Single-Site (LESS) surgery. Furthermore, the manual instruments that are commonly used …


Automated Resonant Wireless Power Transfer To Remote Sensors From An Unmanned Aerial Vehicle, Brent Griffin Aug 2012

Automated Resonant Wireless Power Transfer To Remote Sensors From An Unmanned Aerial Vehicle, Brent Griffin

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Wireless magnetic resonant power transfer is an emerging technology that has many advantages over other wireless power transfer methods due to its safety, lack of interference, and efficiency at medium ranges. In this thesis, we develop a wire- less magnetic resonant power transfer system that enables unmanned aerial vehicles (UAVs) to provide power to, and recharge batteries of, wireless sensors and other electronics far removed from the electric grid. We address the difficulties of implementing and outfitting this system on a UAV with limited payload capabilities and develop a controller that maximizes the received power as the UAV moves into …


Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi Jul 2012

Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Laparo-Endoscopic Single Site (LESS) Robotics Surgery is an advanced technology in the field of Minimally Invasive Surgery (MIS). The LESS surgical robots significantly improve the surgeon’s accuracy, dexterity and visualization, and reduce the invasiveness of surgical procedure results in faster recovery time and improved cosmetic results. In a standard robotic endosurgery, the palpation of tissues is performed by laparoscopic graspers located at the end effectors. The master-slave configuration in robotic surgery leads in remote access to the operation site. Therefore, surgeon’s ability to perceive valuable sensory information is severely diminished. Sensory information such as haptics, which is essential for safe …