Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Performance Prediction Of Drying Process In Residential Clothes Dryer Using Multiphysics Modeling And Simulation, Molly Shircliff Aug 2016

Performance Prediction Of Drying Process In Residential Clothes Dryer Using Multiphysics Modeling And Simulation, Molly Shircliff

Mahurin Honors College Capstone Experience/Thesis Projects

The clothes dryer is the second highest consumer of electricity among household appliances in the U.S. However, few improvements have been made to the overall design of dryers since the 1970s. For this reason, energy efficiency research in domestic clothes dryers is a promising topic. In order to effectively and accurately research and test efficiency and design of new prototypes of the dryer, a mathematical model of the air-vented, residential dryer was created in the Energy Systems Lab at Western Kentucky University, using the text-based environment of MATLAB. This model was developed and simulated using numerical solver techniques. This model …


Designing And Building An Automatic Chamfer Grinder, William Johnson Aug 2016

Designing And Building An Automatic Chamfer Grinder, William Johnson

Mahurin Honors College Capstone Experience/Thesis Projects

Modern day manufacturing is a demanding environment with a constant need for process improvement. As automation becomes more advanced, there are fewer jobs that must be completed by a human. In the case of Stupp Bridge Company, a local manufacturer of steel bridge girders, their workforce is highly skilled, so replacing mundane tasks with automation allow the skilled workers to focus on the difficult jobs. One such task is grinding a chamfer onto every leading edge of each girder flange, eight edges in total, ranging from 20 to 200 feet long. The purpose of this project was to design an …


Design, Testing And Evaluation Of Robotic Mechanisms And Systems For Environmental Monitoring And Interaction, James K. Higgins Aug 2016

Design, Testing And Evaluation Of Robotic Mechanisms And Systems For Environmental Monitoring And Interaction, James K. Higgins

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Unmanned Aerial Vehicles (UAVs) have significantly lowered the cost of remote aerial data collection. The next generation of UAVs, however, will transform the way that scientists and practitioners interact with the environment. In this thesis, we address the challenges of flying low over water to collect water samples and temperature data. We also develop a system that allows UAVs to ignite prescribed fires. Specifically, this thesis contributes a new peristaltic pump designed for use on a UAV for collecting water samples from up to 3m depth and capable of pumping over 6m above the water. Next, temperature sensors and their …


Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Feb 2016

Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Faculty Publications

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom …


Hybrid Diesel-Electric Drivetrain For Small Agricultural Field Machines, Joseph Jackson, Joseph S. Dvorak Jan 2016

Hybrid Diesel-Electric Drivetrain For Small Agricultural Field Machines, Joseph Jackson, Joseph S. Dvorak

Biosystems and Agricultural Engineering Faculty Publications

In this project, a series electric drivetrain sized for small agricultural machinery was developed and tested. Electric drives have noted benefits in simplicity, controllability, integration with other electronics such as those that provide autonomous action, and in efficiency over a wide operating range. Their biggest drawback for agricultural use is the limited capacity of electrical energy storage. A series hybrid drivetrain provides a method to overcome these capacity constraints through the use of chemical energy storage. The series hybrid drivetrain in this research was designed using well-established components. It consisted of a diesel-electric generator, a lead acid battery pack, a …


Electrokinetic Phenomena In Pencil Lead-Based Microfluidics, Yashar Bashirzadeh, Venkat Maruthamuthu, Shizhi Qian Jan 2016

Electrokinetic Phenomena In Pencil Lead-Based Microfluidics, Yashar Bashirzadeh, Venkat Maruthamuthu, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Fabrication of microchannels and associated electrodes to generate electrokinetic phenomena often involves costly materials and considerable effort. In this study, we used graphite pencil-leads as low cost, disposable 3D electrodes to investigate various electrokinetic phenomena in straight cylindrical microchannels, which were themselves fabricated by using a graphite rod as the microchannel mold. Individual pencil-leads were employed as the micro-electrodes arranged along the side walls of the microchannel. Efficient electrokinetic phenomena provided by the 3D electrodes, including alternating current electroosmosis (ACEO), induced-charge electroosmosis (ICEO), and dielectrophoresis (DEP), were demonstrated by the introduced pencil-lead based microfluidic devices. The electrokinetic phenomena were characterized …


Analytical Solution For Speed To Achieve A Desired Operating Point For A Given Fan Or Pump, Michael F. Kocher, Jeyamkondan Subbiah Jan 2016

Analytical Solution For Speed To Achieve A Desired Operating Point For A Given Fan Or Pump, Michael F. Kocher, Jeyamkondan Subbiah

Department of Biological Systems Engineering: Papers and Publications

The Affinity Laws for fans (and pumps) provide a way of determining new fan or pump speed given fan or pump performance curve data and a desired operating point (combination of flow rate and pressure) that does not fall on the curve. However, the affinity law calculations require using a point on the curve (hereafter referred to as the “basic point”) to determine the new speed. Most references regarding the Affinity Laws do not give a clear description of the method for determining the “basic point”, and improper selection of this point can affect the results considerably. This article describes …


Inter-Row Robot Navigation Using 1d Ranging Sensors, Tyler A. Troyer, Santosh Pitla, Ethan Nutter Jan 2016

Inter-Row Robot Navigation Using 1d Ranging Sensors, Tyler A. Troyer, Santosh Pitla, Ethan Nutter

Department of Biological Systems Engineering: Papers and Publications

In this paper a fuzzy logic navigation controller for an inter-row agricultural robot is developed and evaluated in laboratory settings. The controller receives input from one-dimensional (1D) ranging sensors on the robotic platform, and operated on ten fuzzy rules for basic row-following behavior. The control system was implemented on basic hardware for proof of concept and operated on a commonly available microcontroller development platform and open source software libraries. The robot platform used for experimentation was a small tracked vehicle with differential steering control. Fuzzy inferencing and defuzzification, step response and cross track error were obtained from the test conducted …


Comparing Various Hardware/Software Solutions And Conversion Methods For Controller Area Network (Can) Bus Data Collection, Samuel E. Marx, Joe D. Luck, Santosh Pitla, Roger M. Hoy Jan 2016

Comparing Various Hardware/Software Solutions And Conversion Methods For Controller Area Network (Can) Bus Data Collection, Samuel E. Marx, Joe D. Luck, Santosh Pitla, Roger M. Hoy

Department of Biological Systems Engineering: Papers and Publications

Various hardware and software solutions exist for collecting Controller Area Network (CAN) bus data. Digital data accuracy could vary based upon different data logging methods (e.g., hardware/software timing, processor timing, etc.). CAN bus data were collected from agricultural tractors using multiple data acquisition solutions to quantify differences among collection methods and demonstrate potential data accumulation rates. Two types of data were observed for this study. The first, CAN bus frame data, represents data collected for each line of hex data sent from an ECU. One issue with frame data is the resulting large file sizes, therefore a second logging format …