Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng Jan 2023

Topologically Optimized Electrodes For Electroosmotic Actuation, Jianwen Sun, Jianyu Zhang, Ce Guan, Teng Zhou, Shizhi Qian, Yongbo Deng

Mechanical & Aerospace Engineering Faculty Publications

Electroosmosis is one of the most used actuation mechanisms for the microfluidics in the current active lab-on-chip devices. It is generated on the induced charged microchannel walls in contact with an electrolyte solution. Electrode distribution plays the key role on providing the external electric field for electroosmosis, and determines the performance of electroosmotic microfluidics. Therefore, this paper proposes a topology optimization approach for the electrodes of electroosmotic microfluidics, where the electrode layout on the microchannel wall can be determined to achieve designer desired microfluidic performance. This topology optimization is carried out by implementing the interpolation of electric insulation and electric …


A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu Jan 2023

A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu

Mechanical & Aerospace Engineering Faculty Publications

Over the last couple of decades, numerous piezoelectric footwear energy harvesters (PFEHs) have been reported in the literature. This paper reviews the principles, methods, and applications of PFEH technologies. First, the popular piezoelectric materials used and their properties for PEEHs are summarized. Then, the force interaction with the ground and dynamic energy distribution on the footprint as well as accelerations are analyzed and summarized to provide the baseline, constraints, potential, and limitations for PFEH design. Furthermore, the energy flow from human walking to the usable energy by the PFEHs and the methods to improve the energy conversion efficiency are presented. …


Zno Varistors – The Ideal Microstructure And Characteristics, And Methods Investigated And Developed To Achieve These, Maura Kelleher Jan 2023

Zno Varistors – The Ideal Microstructure And Characteristics, And Methods Investigated And Developed To Achieve These, Maura Kelleher

Books/Book Chapters

ZnO-Bi2O3-Sb2O3 varistors have been extensively studied since their discovery 5 decades ago. Their function in protecting increasingly sensitive electronic components by absorbing random surges of energy is even more important today. Also, the metal oxides from which they are made from are becoming even more precious. Their electrical characteristics are highly dependent on their microstructural characteristics which are highly dependent on their composition and methods used. The purpose of this article is to explain the ideal microstructure required to obtain the ideal electrical characteristics, the powder preparation methods investigated and developed to achieve it, and some future directions are outlined.