Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner Dec 2019

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner

Graduate Theses and Dissertations

This research focuses on the understanding, development, and additive manufacture of a 3D printed snake skin-inspired texture pattern. The design functionalities of snake skin were determined through the study of the snake species Python Regius otherwise known as the ball python. Each scale of a snake has hierarchical texture with hexagonal macro-patterns aligned on the ventral surface of the skin with overriding anisotropic micro textured patterns such as denticulations and fibrils. Using a laser-powder bed fusion (L-PBF) process, 420 stainless steel samples were 3D printed which closely resemble the above described directional texture of natural snake skin. This printed surface …


Solid Oxide Electrochemical Cells For High Temperature Hydrogen Production: Theory, Fabrication And Characterization, Can Zhou Jul 2018

Solid Oxide Electrochemical Cells For High Temperature Hydrogen Production: Theory, Fabrication And Characterization, Can Zhou

Mechanical & Aerospace Engineering Theses & Dissertations

In this dissertation, the concept of water splitting using solid oxide photoelectrochemical cells (SOPCs) at high temperature was introduced and experimentally investigated. High temperature photoelectrochemical water splitting physically broadens the selection of potential applicable semiconductor materials and enables more visible sunlight absorption. This newly conceived concept provides a unique pathway for solar hydrogen production, as compared to conventional photoelectrochemical cells (PECs) that use wide band gap semiconductors in aqueous environments. The theoretical framework of SOPC was elaborated, followed by the experimental investigation to search for appropriate high temperature materials. Selected high temperature Schottky and p-n junction diodes, which were expected …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges Dec 2017

3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges

Graduate Theses and Dissertations

3D printing was used to fabricate porous artificial knee meniscus material from biocompatible polymeric blends of polycarbonate-urethane (PCU) and ultra-high-molecular-weight polyethylene (UHMWPE) to enable “weep” lubrication that mimics the native meniscus. 3D printed and molded pure PCU, as well as molded PCU and UHMWPE, were used for comparison. Preliminary printing was done to evaluate the impact of process parameters on the results. The samples were subject to a variety of rotational oscillating friction and wear tests under simulated body fluid and loading conditions to replicate the natural motion of the knee. Results show that 3D printed PCU samples yielded a …