Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Mechanical Engineering

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


A Framework For Stable Robot-Environment Interaction Based On The Generalized Scattering Transformation, Kanstantsin Pachkouski Nov 2022

A Framework For Stable Robot-Environment Interaction Based On The Generalized Scattering Transformation, Kanstantsin Pachkouski

Electronic Thesis and Dissertation Repository

This thesis deals with development and experimental evaluation of control algorithms for stabilization of robot-environment interaction based on the conic systems formalism and scattering transformation techniques. A framework for stable robot-environment interaction is presented and evaluated on a real physical system. The proposed algorithm fundamentally generalizes the conventional passivity-based approaches to the coupled stability problem. In particular, it allows for stabilization of not necessarily passive robot-environment interaction. The framework is based on the recently developed non-planar conic systems formalism and generalized scattering-based stabilization methods. A comprehensive theoretical background on the scattering transformation techniques, planar and non-planar conic systems is presented. …


The Role Of Transient Vibration Of The Skull On Concussion, Rodrigo Dalvit Carvalho Da Silva Mar 2022

The Role Of Transient Vibration Of The Skull On Concussion, Rodrigo Dalvit Carvalho Da Silva

Electronic Thesis and Dissertation Repository

Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to …


Data And Sensor Fusion Using Fmg, Semg And Imu Sensors For Upper Limb Prosthesis Control, Jason S. Gharibo Aug 2021

Data And Sensor Fusion Using Fmg, Semg And Imu Sensors For Upper Limb Prosthesis Control, Jason S. Gharibo

Electronic Thesis and Dissertation Repository

Whether someone is born with a missing limb or an amputation occurs later in life, living with this disability can be extremely challenging. The robotic prosthetic devices available today are capable of giving users more functionality, but the methods available to control these prostheses restrict their use to simple actions, and are part of the reason why users often reject prosthetic technologies. Using multiple myography modalities has been a promising approach to address these control limitations; however, only two myography modalities have been rigorously tested so far, and while the results have shown improvements, they have not been robust enough …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang Jan 2021

Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang

Electronic Thesis and Dissertation Repository

In recent years, Magneto-Rheological (MR) fluids has been used in various fields such as robotics, automotive, aerospace, etc. The most common use of the MR fluids is within a clutch-like mechanism, namely an MR clutch. When mechanical input is coupled to the input part of the MR clutch, the MR clutch provides a means of delivering this mechanical input to its output, through the MR fluids. The combination of the mechanical input device and the MR clutch is called an MR actuator. The MR actuator features inherently compliance owing to the characteristic of the MR fluids while also offering higher …


A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou Dec 2019

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou

Electronic Thesis and Dissertation Repository

Tremor, one of the most disabling symptoms of Parkinson's disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human.

It has been reported in …


A Heterogeneous Patient-Specific Biomechanical Model Of The Lung For Tumor Motion Compensation And Effective Lung Radiation Therapy Planning, Parya Jafari Sep 2019

A Heterogeneous Patient-Specific Biomechanical Model Of The Lung For Tumor Motion Compensation And Effective Lung Radiation Therapy Planning, Parya Jafari

Electronic Thesis and Dissertation Repository

Radiation therapy is a main component of treatment for many lung cancer patients. However, the respiratory motion can cause inaccuracies in radiation delivery that can lead to treatment complications. In addition, the radiation-induced damage to healthy tissue limits the effectiveness of radiation treatment. Motion management methods have been developed to increase the accuracy of radiation delivery, and functional avoidance treatment planning has emerged to help reduce the chances of radiation-induced toxicity. In this work, we have developed biomechanical model-based techniques for tumor motion estimation, as well as lung functional imaging. The proposed biomechanical model accurately estimates lung and tumor motion/deformation …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane Nov 2017

Hybrid Attitude Control And Estimation On So(3), Soulaimane Berkane

Electronic Thesis and Dissertation Repository

This thesis presents a general framework for hybrid attitude control and estimation design on the Special Orthogonal group SO(3). First, the attitude stabilization problem on SO(3) is considered. It is shown that, using a min-switch hybrid control strategy designed from a family of potential functions on SO(3), global exponential stabilization on SO(3) can be achieved when this family of potential functions satisfies certain properties. Then, a systematic methodology to construct these potential functions is developed. The proposed hybrid control technique is applied to the attitude tracking problem for rigid body systems. A smoothing mechanism is proposed to filter out the …


Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani Jul 2016

Hybrid Magneto-Rheological Actuators For Human Friendly Robotic Manipulators, Masoud Moghani

Electronic Thesis and Dissertation Repository

In recent years, many developments in the field of the physical human robot interaction (pHRI) have been witnessed and significant attentions have been given to the subject of safety within the interactive environments. Ensuring the safety has led to the design of the robots that are physically unable to hurt humans. However, Such systems commonly suffer from the safety-performance trade-off. Magneto-Rheological (MR) fluids are a special class of fluids that exhibit variable yield stress with respect to an applied magnetic field. Devices developed with such fluids are known to provide the prerequisite requirements of intrinsic safe actuation while maintaining the …


Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy Feb 2016

Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy

Electronic Thesis and Dissertation Repository

The process of development of a new robot is one of the modern technological arts. This process involves multiple complex steps and recursive approach. In this project, a solution for automatic harvesting of mushrooms is developed. In order to design an effective solution, it is necessary to explore and take into consideration the limitations of grasping very soft and fragile objects (particularly mushrooms). We will elaborate several strategies of picking and analyze each strategy to formulate the design requirements, develop a solution, and finally, evaluate the efficiency of the proposed solution in actual farm conditions for real mushrooms. The mushroom …


Towards The Development Of A Wearable Tremor Suppression Glove, Yue Zhou Dec 2015

Towards The Development Of A Wearable Tremor Suppression Glove, Yue Zhou

Electronic Thesis and Dissertation Repository

Patients diagnosed with Parkinson’s disease (PD) often associate with tremor. Among other symptoms of PD, tremor is the most aggressive symptom and it is difficult to control with traditional treatments. This thesis presents the assessment of Parkinsonian hand tremor in both the time domain and the frequency domain, the performance of a tremor estimator using different tremor models, and the development of a novel mechatronic transmission system for a wearable tremor suppression device. This transmission system functions as a mechatronic splitter that allows a single power source to support multiple independent applications. Unique features of this transmission system include low …


Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich Apr 2015

Force Sensing In Arthroscopic Instruments Using Fiber Bragg Gratings, Daniel S. Yurkewich

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery has revolutionized many medical procedures; however, it also impedes the ability to feel the interaction between the surgical tool and the anatomical part being operated on. In order to address this problem, it is necessary to obtain accurate measurements of the interaction forces exerted on the surgical tools during surgery. These forces can then be manifested to the surgeon via a haptic device or presented visually (visual-force feedback). This thesis describes the use of a fiber optic device to measure and display to the surgeon interaction forces acting on an arthroscopic tool. The sensorization of the tool involves …


Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei Dec 2014

Design Of A Haptic Interface For Medical Applications Using Magneto-Rheological Fluid Based Actuators, Nima Najmaei

Electronic Thesis and Dissertation Repository

This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy …


Numerical Modeling Of Deformation, Oscillation, Spreading And Collision Characteristics Of Droplets In An Electric Field, Osameh Ghazian Dec 2014

Numerical Modeling Of Deformation, Oscillation, Spreading And Collision Characteristics Of Droplets In An Electric Field, Osameh Ghazian

Electronic Thesis and Dissertation Repository

Electric field induced flows, or electrohydrodynamics (EHD), have been promising in many fast-growing technologies, where droplet movement and deformation can be controlled to enhance heat transfer and mass transport. Several complex EHD problems existing in many applications were investigated in this thesis.

Firstly, this thesis presents the results of numerical simulations of the deformation, oscillation and breakup of a weakly conducting droplet suspended in an ambient medium with higher conductivity. It is the first time that the deformation of such a droplet was investigated numerically in a 3D configuration. We have determined three types of behavior for the droplets, which …


A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri Jul 2014

A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri

Electronic Thesis and Dissertation Repository

In this study, the methodology to construct a control system based on computational fluid dynamics (CFD) simulations is developed for supercritical water cooled reactor (SCWR). The CFD model using Reynolds Stress Model (RSM) and k-w SST model is validated with the experimental cases of steady state and vertically up flowing supercritical water in circular tubes for normal heat transfer and deteriorated heat transfer (DHT) cases. This model is extended to simulate the transient thermal-hydraulic behaviour of supercritical fluid flow and heat transfer, and the results are also compared with the 1-D numerical model, THRUST. The DHT phenomenon is investigated using …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian Aug 2012

Preoperative Planning Of Robotics-Assisted Minimally Invasive Cardiac Surgery Under Uncertainty, Hamidreza Azimian

Electronic Thesis and Dissertation Repository

In this thesis, a computational framework for patient-specific preoperative planning of Robotics-Assisted Minimally Invasive Cardiac Surgery (RAMICS) is developed. It is expected that preoperative planning of RAMICS will improve the rate of success by considering robot kinematics, patient-specific thoracic anatomy, and procedure-specific intraoperative conditions. Given the significant anatomical features localized in the preoperative computed tomography images of a patient's thorax, port locations and robot orientations (with respect to the patient's body coordinate frame) are determined to optimize characteristics such as dexterity, reachability, tool approach angles and maneuverability. In this thesis, two approaches for preoperative planning of RAMICS are proposed that …


Biomechanical Modeling For Lung Tumor Motion Prediction During Brachytherapy And Radiotherapy, Zahra Shirzadi Aug 2012

Biomechanical Modeling For Lung Tumor Motion Prediction During Brachytherapy And Radiotherapy, Zahra Shirzadi

Electronic Thesis and Dissertation Repository

A novel technique is proposed to develop a biomechanical model for estimating lung’s tumor position as a function of respiration cycle time. Continuous tumor motion is a major challenge in lung cancer treatment techniques where the tumor needs to be targeted; e.g. in external beam radiotherapy and brachytherapy. If not accounted for, this motion leads to areas of radiation over and/or under dosage for normal tissue and tumors. In this thesis, biomechanical models were developed for lung tumor motion predication in two distinct cases of lung brachytherapy and lung external beam radiotherapy. The lung and other relevant surrounding organs geometries, …


Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi May 2012

Electrohydrodynamic Enhancement Of Heat Transfer And Mass Transport In Gaseous Media, Bulk Dielectric Liquids And Dielectric Thin Liquid Films, Seyed Reza Mahmoudi

Electronic Thesis and Dissertation Repository

Controlling transport phenomena in liquid and gaseous media through electrostatic forces has brought new important scientific and industrial applications. Although numerous EHD applications have been explored and extensively studied so far, the fast-growing technologies, mainly in the semiconductor industry, introduce new challenges and demands. These challenges require enhancement of heat transfer and mass transport in small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in both macro and micro-scale devices.

Several existing problems in EHD heat transfer enhancements were investigated in this thesis. …