Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani Aug 2021

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani

Electronic Theses and Dissertations

Until recently, study and correction of motor or gait functions required costly sensors and measurement setups (e.g., optical motion capture systems) which were only available in laboratories or clinical environments. However, due to (1) the growing availability and affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth Low Energy (BLE), it is now possible to measure and provide feedback in real-time for biomechanical parameters outside of those specialized settings. To enable gait training without an expert who can provide verbal feedback, augmented feedback, which is divided …


Afloat 2021: American Floating Offshore Wind Technical Summit, Advanced Structures And Composites Center Jul 2021

Afloat 2021: American Floating Offshore Wind Technical Summit, Advanced Structures And Composites Center

General University of Maine Publications

Email invitation to the "AFloat 2021: American Floating Offshore Wind Technical Summit" scheduled for September 8 and 9, 2021. Due to the emergence of COVID variants and the health risks they pose, a decision was made to hold the event virtually to ensure everyone's safety.


Active Blade Pitch And Hull-Based Structural Control Of Floating Offshore Wind Turbines, Eben Lenfest May 2021

Active Blade Pitch And Hull-Based Structural Control Of Floating Offshore Wind Turbines, Eben Lenfest

Electronic Theses and Dissertations

Floating offshore wind turbines (FOWTs) have the potential to bring renewable energy to waters too deep for traditional offshore wind turbines while still being able to harness strong coastal winds in areas near population centers. However, these floating wind turbines come at a higher capital cost relative to fixed foundations and are more susceptible to vibrations induced by waves. Advances in control technologies offer the potential to reduce fatigue loads due to these vibrations, extending the life of the platform and thereby spreading the capital costs of the turbine over a longer period of time. One such advance is in …