Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Performance-On-Demand Mems (Podmems): Electrical Control Of Effective Mass, Damping, And Stiffness, Shehrin Sayed Jan 2013

Performance-On-Demand Mems (Podmems): Electrical Control Of Effective Mass, Damping, And Stiffness, Shehrin Sayed

Open Access Theses

We propose the use of electrostatic force feedback to control the stiffness, damping, or mass of MEMS. If feedback forces are proportional to sensed displacement, velocity, or acceleration of a MEMS proof mass, then feedback can be used to increase or decrease the apparent stiffness, damping, and or mass of the MEMS. Such feedback can be used to compensate for process variations, packaging stress, thermal drift, viscous damping, etc. Prior efforts by others include position or velocity based feedback for modifying frequency, bandwidth, quality factor, or sensitivity of resonators. We present a means of quantitative control of stiffness, damping, and …


Modeling Tools For Conformal Orthotic Devices, Steven David Riddle Jan 2013

Modeling Tools For Conformal Orthotic Devices, Steven David Riddle

Open Access Theses

The purpose of this thesis is to advance the design of conformal orthotic devices through the development of two modeling tools to address knowledge gaps in the field.

The field of human orthotics has been continually troubled by identifying successful methods of harnessing devices to the body. Past orthotics have utilized a rigid framework with minimal degrees of freedom (DOFs) driven by hard actuators attached to the body at select anchor points. Many devices design the structure and anchor points such that they reduce the degrees of freedom of a targeted joint, limiting the user's mobility and often causing the …


Autonomous Orientation And Geolocation Via Celestial Objects, Cheng Liu Jan 2013

Autonomous Orientation And Geolocation Via Celestial Objects, Cheng Liu

Open Access Theses

Based on a hemispherical sensor geometry, a novel celestial navigation system is developed to use celestial objects to determine the absolute location and orientation information without the aid of satellites via two different approaches.

The first approach employs a hemispherical arrangement of light intensity sensors to determine the vector to the dominant light source. We present the sensing system to measure the sun vector via least squares method and achieve the application of a low-cost, small-sized solar compass. The system is shown to work well under ideal conditions but is susceptible to noise and uncertainties in some situations.

The second …