Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Prolonged Exposure To Microgravity Increases Susceptibility To Traumatic Brain Injury, Ryan Baskerville Jan 2022

Prolonged Exposure To Microgravity Increases Susceptibility To Traumatic Brain Injury, Ryan Baskerville

UNF Graduate Theses and Dissertations

With the prospect of semi-permanent and permanent habitable fixtures on the moon and Mars, the complications associated with long-term exposure to microgravity should be investigated exhaustively. Spaceflight Associated Neuro-Ocular Syndrome (SANS), a group of neurological and ocular effects resulting from prolonged exposure to microgravity, is characterized by significant fluid shifts into the cranium, namely cerebrospinal fluid and blood, and an upward shift of the brain relative to the skull. This syndrome, along with its immediate effects on visual acuity, cognitive ability, and motor function are recognized by NASA, but its effects on susceptibility to traumatic brain injury have yet to …


Understanding The Effects Of Long-Duration Spaceflight On Fracture Risk In The Human Femur Using Finite Element Analysis, Keyanna Brielle Henderson Dec 2020

Understanding The Effects Of Long-Duration Spaceflight On Fracture Risk In The Human Femur Using Finite Element Analysis, Keyanna Brielle Henderson

Master's Theses

Long-duration spaceflight has been shown to have significant, lasting effects on the bone strength of astronauts and to contribute to age-related complications later in life. The microgravity environment of space causes a decrease in daily mechanical loading, which signals a state of disuse to bone cells. This affects the bone remodeling process, which is responsible for maintaining bone mass, causing an increase in damage and a decrease in density. This leads to bone fragility and decreases overall strength, posing a risk for fracture. However, there is little information pertaining to the timeline of bone loss and subsequent fracture risk.

This …


Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson Jan 2019

Quantification Of Papillary Muscle Motion And Mitral Regurgitation After Myocardial Infarction, Connor R. Ferguson

Theses and Dissertations--Mechanical Engineering

Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12 sheep. Severity of mitral regurgitation was rated by two-dimensional echocardiography and regurgitant volume was estimated using MRI. Of the cohort, 6 animals (DC) received hydrogel injection therapy shown to limit ventricular remodeling after myocardial infarction while the control group (MI) received a similar pattern of saline injections. …


Morphology Of Brain Sulci Trabeculae And Its Effect On Brain During Impacts, Sharlin Anwar Jan 2015

Morphology Of Brain Sulci Trabeculae And Its Effect On Brain During Impacts, Sharlin Anwar

Dissertations and Theses

Traumatic brain injury (TBI) is an intracranial injury caused by direct contact or non-contact head impacts to the brain. TBI is a major problem that accounts for high incidents of hospitalizations each year. Thus, it is important to understand and predict the occurrence of TBI in an impact. It has been shown that the subarachnoid space (SAS) trabeculae play an important role in damping the effect of an impact, thus reducing the injuries. However, the influence of sulci parameters and the sulci trabeculae in TBI due to impact is unexplored. Studies have shown that inclusion of sulci in brain models …


Computational Modeling Of Cardiac Biomechanics, Amir Nikou Jan 2015

Computational Modeling Of Cardiac Biomechanics, Amir Nikou

Theses and Dissertations--Mechanical Engineering

The goal of this dissertation was to develop a realistic and patient-specific computational model of the heart that ultimately would help medical scientists to better diagnose and treat heart diseases. In order to achieve this goal, a three dimensional finite element model of the heart was created using magnetic resonance images of the beating pig heart. This model was loaded by the pressure of blood inside the left ventricle which was measured by synchronous catheterization. A recently developed structurally based constitutive model of the myocardium was incorporated in the finite element solver to model passive left ventricular myocardium. Additionally, an …