Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany G. Micheal Prof., Yehia Bahei El Din Prof. Feb 2022

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany G. Micheal Prof., Yehia Bahei El Din Prof.

Centre for Advanced Materials

Composite structures reinforced with electrically active filaments are modeled with the finite element method while the underlying thermo-electromechanical coupling phenomena and damage are taken into consideration. At the outset, structural analysis is performed with a general-purpose finite element code and a special material routine, which propagates local phenomena to the overall scale is utilized. The material routine implements an interactive, multiscale analysis, which provides seamless integration of the mechanics at the composite’s micro, macro, and structural length scales. The interface between the multiscale material routine and the finite element code is made through nonmechanical strains caused by damage, and piezo/pyro-electric …


Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany Micheal, Yehia Bahei-El-Din Jan 2022

Implementation Of Multiscale Mechanisms In Finite Element Analysis Of Active Composite Structures, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Interrogation of composite structures for inherent damage is investigated by implementing a three-tier analysis scheme. The analysis starts at the structure level where a general-purpose Finite Element code ABAQUS is employed to obtain the stress field in the second level of analysis which is the composite laminate. A special material routine is prepared to propagate the local fields to the individual plies and hence to the third level of analysis which is the microstructure modeling of the composite. Through the third level of analysis, interface damage between fiber and matrix is checked implementing a certain failure criteria. The interaction between …


Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha Jan 2021

Phase-Field Fracture Modeling For Interlocking Micro-Architectured Materials, Shubham Sinha

Dissertations, Master's Theses and Master's Reports

It is fascinating to see how natural materials like teeth enamel, bone and nacre possess a very high stiffness and strength in spite of the fact that they are composed of minerals mostly. Studies have shown the reason for this aberration as the presence of weaker interfaces with intricate interlocking architectures at microscopic levels in these materials. Inspired by the architecture of these materials, micro-architectured sutures with jig-saw like geometry is being studied in this research study. The main focus of this study is to examine the effects of friction co-efficient and interlocking angles of the jig-saw tabs on pullout …


Dynamic Fracture At An Interface: A Peridynamic Analysis, Javad Mehrmashhadi, Longzhen Wang, Quang Van Le, Florin Bobaru Ph.D. Nov 2018

Dynamic Fracture At An Interface: A Peridynamic Analysis, Javad Mehrmashhadi, Longzhen Wang, Quang Van Le, Florin Bobaru Ph.D.

Javad Mehrmashhadi

Recent impact experiments showed the influence a strong or weak interface in a bi-layered PMMA material has on dynamic fracture mechanisms. We show that a linear elastic with brittle damage peridynamic model, which works very well for glass, leads to crack propagation speeds significantly faster than those measured experimentally in the PMMA system. We propose an explanation for this behavior: localized heating in the region near the crack tip (due to high strain rates) softens the material sufficiently to make a difference. We introduce this effect in our peridynamic model, via a bi-linear bond force-strain relationship, and the computed crack …


Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero Jan 2018

Thermal-Fatigue And Thermo-Mechanical Equivalence For Transverse Cracking Evolution In Laminated Composites, Javier Cabrera Barbero

Graduate Theses, Dissertations, and Problem Reports

Carbon fiber reinforced plastics (CFRP) are potential materials for many aerospace and aeronautical applications due to their high specif strength/weight and a low coeffcient of thermal expansion (CTE) resulting in a high long-term stability. Among candidate structures, the re-entry reusable launch vehicles (RLV), the fuel oxidant storage and transportation at cryogenic temperature, space satellites, and aircraft structure (frame, wings, etc...) can be highlighted. However, CFRP are prone to internal damage as a result of high residual stresses and thermal fatigue loading. In this study, micro-cracking damage evolution in laminated composites subjected to monotonic cooling and thermal cyclic loads is developed …