Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Predicting The Acoustic Response Of The Golf Club & Ball Impact Using Finite Elements And The Boundary Element Method, Scott Henry Moreira Dec 2011

Predicting The Acoustic Response Of The Golf Club & Ball Impact Using Finite Elements And The Boundary Element Method, Scott Henry Moreira

Master's Theses

An improved and repeatable method for meshing golf club heads using finite elements in TrueGrid® was developed. Using solid brick elements through the thickness of the club head instead of shell elements better represents the many thickness variations throughout each section of a club head. This method also results in a high quality mesh at the center of the club head sections while still maintaining high quality at the edges. A simulation procedure was also developed to predict the acoustic pressure at a designated point in an acoustic medium of a golf club and ball impact using the BEM and …


Vibration-Based Health Monitoring Of Multiple-Stage Gear Train And Differential Planetary Transmission Involving Teeth Damage And Backlash Nonlinearity, Andrew Patrick Sommer Sep 2011

Vibration-Based Health Monitoring Of Multiple-Stage Gear Train And Differential Planetary Transmission Involving Teeth Damage And Backlash Nonlinearity, Andrew Patrick Sommer

Master's Theses

The objective of this thesis is to develop vibration-based fault detection strategies for on-line condition monitoring of gear transmission systems. The study divides the thesis into three sections. First of all, the local stresses created by a root fatigue crack on a pinion spur gear are analyzed using a quasi-static finite element model and non-linear contact mechanics simulation. Backlash between gear teeth which is essential to provide better lubrication on tooth surfaces and to eliminate interference is included as a defect and a necessary part of transmission design. The second section is dedicated to fixed axis power trains. Torsional vibration …


Structural Analyses Of Wind Turbine Tower For 3 Kw Horizontal Axis Wind Turbine, Tae Gyun Gwon Aug 2011

Structural Analyses Of Wind Turbine Tower For 3 Kw Horizontal Axis Wind Turbine, Tae Gyun Gwon

Master's Theses

Structure analyses of a steel tower for Cal Poly's 3 kW small wind turbine is presented. First, some general design aspects of the wind turbine tower are discussed: types, heights, and some other factors that can be considered for the design of wind turbine tower. Then, Cal Poly's wind turbine tower design is presented, highlighting its main design features. Secondly, structure analysis for Cal Poly's wind turbine tower is discussed and presented. The loads that are specific to the wind turbine system and the tower are explained. The loads for the static analysis of the tower were calculated as well. …


Structure Climbing Monkey Robot, Paul Bessent Jun 2011

Structure Climbing Monkey Robot, Paul Bessent

Master's Theses

This report describes the design, building, and testing of the Structure Climbing Monkey Robot (SCMR). It is composed of seven successive joints and linkages with two grippers at the two ends. Each gripper can act as the base or the end of the robot. The SCMR has the ability to climb any structure. The gripper plates can be changed to grab different kinds of structures, but this one is made to grab 2x4‘s. A program was written to assist the user to grab four non-coplanar, non-orthogonal points.

The SCMR is actuated by a total of nine motors: two to open …


Optimization And Modeling Tools For Telescope Hexapod Structures, Michael Edward Feeney Jun 2011

Optimization And Modeling Tools For Telescope Hexapod Structures, Michael Edward Feeney

Master's Theses

Hexapod trusses are an important element in many mechanical design systems. The natural frequency and stiffness behavior under geometric and mass variations of such structures is largely undocumented. Furthermore, the ability to quickly model hexapod designs and explore a large design-space in finite element software packages is, in general, time consuming and inefficient. The purpose of this project was to develop software tools that made design-space exploration (modeling and simulation processes) for hexapod structures drastically more efficient. Secondly, the project included an experimental analysis portion to demonstrate the various modal study techniques and to validate finite element analysis predictions. Lastly, …