Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer-Aided Engineering and Design

University of Tennessee, Knoxville

Theses/Dissertations

Additive

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Trajectory Planning Of Non-Gravity Aligned (Nga) Segments In Arbitrary Directions For Large Scale Additive Manufacturing Of Metals (Lsamm), James Logan Mcneil May 2022

Trajectory Planning Of Non-Gravity Aligned (Nga) Segments In Arbitrary Directions For Large Scale Additive Manufacturing Of Metals (Lsamm), James Logan Mcneil

Doctoral Dissertations

Traditionally, slicing and path planning are done along the gravity-aligned direction of a part, causing more complex geometrical shapes to have unsupported overhangs. Wire Arc Additive Manufacturing (WAAM) has typically handled overhangs with a robotic part positioner; but, to extend the current capabilities of LSAMM, a new framework for slicing and building parts out of gravity alignment has been developed. The proposed framework focuses on segmenting more complex geometrical parts into gravity-aligned (GA), non-gravity aligned (NGA), and transition zones to support tool-path generation. GA and NGA segments can be planned with traditional slicing techniques, but the NGA tool-paths must be …


Redundant Kinematics Solution For A Combined 6dof Robotic Manipulator And 2dof Part Positioner In A Waam Application, Ethan C. Vals May 2022

Redundant Kinematics Solution For A Combined 6dof Robotic Manipulator And 2dof Part Positioner In A Waam Application, Ethan C. Vals

Masters Theses

A typical wire arc additive manufacturing (WAAM) robot cell consists of a 6 DOF robot manipulator and a 2 DOF part positioner. Since the WAAM process requires a minimum of 5 DOFs, there are three redundant DOFs in the system that can be utilized to improve the robot manipulator positioning during part printing. In this thesis, the redundant kinematics of a manipulator and part positioner robot system are solved and then implemented on an actual robot system. The inverse kinematics of the manipulator and part positioner are solved as a kinematic chain using the pseudo-inverse Jacobian method. The two DOFs …