Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer-Aided Engineering and Design

Michigan Technological University

Micromechanics

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot Jan 2017

Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot

Dissertations, Master's Theses and Master's Reports

The thermal property of epoxy as the binder in the Carbon Fiber (CF) composites, especially thermal conductivity is important to achieve the advance technology and to improve the performance of materials. Multiscale modeling including molecular dynamic (MD) modeling and micromechanical modeling is used to study the properties of neat Cycloaliphatic Epoxies (CE) and Graphene nanoplatelet (GNP)/CE with and without covalent functionalization.

The thermal properties (glass-transition temperature, thermal expansion coefficient, and thermal conductivity) and mechanical properties of CE system are investigated by MD modeling using OPLS-All Atom force field. A unique crosslinking technique is developed to achieve the cured CE models …