Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh Aug 2022

Foundations For Finite-State Modelling Of A Two-Dimensional Airfoil That Reverses Direction, Jake Michael Oscar Welsh

McKelvey School of Engineering Theses & Dissertations

Current 3-D finite-state wake models are incapable of simulating a maneuver in which the sign of the free-stream velocity changes direction and the rotor enters its own wake -- as might occur in the case of a helicopter which ascends and then descends. It is the purpose of this work to create a 2-D finite-state wake model which is capable of handling changes in free-stream direction as a precursor to development of a 3-D model that can do the same.

The 2-D finite-state model used for reentry modifications is an existing model created by Peters, Johnson, and Karunamoorthy. By the …


Computational Fluid Dynamic Analysis Of Microbubble Drag Reduction Systems At High Reynolds Number, John D. Goolcharan Jul 2016

Computational Fluid Dynamic Analysis Of Microbubble Drag Reduction Systems At High Reynolds Number, John D. Goolcharan

FIU Electronic Theses and Dissertations

Microbubble drag reduction (MBDR) is an effective method to improve the efficiency of fluid systems. MBDR is a field that has been extensively studied in the past, and experimental values of up to 80% to 90% drag reduction have been obtained. The effectiveness and simplicity of MBDR makes it a viable method for real world applications, particularly in naval applications where it can reduce the drag between the surface of ships and the surrounding water. A two dimensional single phase model was created in ANSYS Fluent to effectively model the behavior of bubble laden flow over a flat plate. This …


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the …


A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel Oct 2015

A High-Speed X-Ray Detector System For Noninvasive Fluid Flow Measurements, Timothy B. Morgan, Benjamin R. Halls, Terrence R. Meyer, Theodore J. Heindel

Terrence R Meyer

The opaque nature of many multiphase flows has long posed a significant challenge to the visualization and measurement of desired characteristics. To overcome this difficulty, X-ray imaging, both in the form of radiography and computed tomography, has been used successfully to quantify various multiphase flow phenomena. However, the relatively low temporal resolution of typical X-ray systems limit their use to moderately slow flows and time-average values. This paper discusses the development of an X-ray detection system capable of high-speed radiographic imaging that can be used to visualize multiphase flows. Details of the hardware will be given and then applied to …