Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Cam And Design For Manufacturing: Developing A Project-Based Learning Course, Stephen Pierson May 2024

Cam And Design For Manufacturing: Developing A Project-Based Learning Course, Stephen Pierson

Mechanical Engineering Undergraduate Honors Theses

To effectively serve student career success, mechanical engineering programs must teach students how to account for manufacturing considerations in design. Despite this, manufacturing education is a glaring area of need in current engineering curricula. In fact, basic manufacturing knowledge is one of the only hard skills consistently ranked as one of the greatest weaknesses of mechanical engineering hires in surveys of industrial employers over the last few decades. Without radically changing departmental curriculum to include more emphasis on design-build projects, one solution to combat this is to incubate a lab course in mechanical engineering programs in which undergraduates would practice …


Experimental And Numerical Investigation Of Air-Cooled Heat Sinks, Ethan Weems May 2024

Experimental And Numerical Investigation Of Air-Cooled Heat Sinks, Ethan Weems

Mechanical Engineering Undergraduate Honors Theses

Lightweight and affordable cooling capabilities are critical as the physical scale of electronics continues to decrease. Air-cooled heat sinks that dissipate heat from electronic components to the surrounding air are excellent candidates to fill this role. While plate-fin and pin-fin heat sinks have been implemented extensively for electronic cooling, recent advances in additive manufacturing enable the fabrication of more complex structures. In this undergraduate Honors thesis, a means by which to generate novel heat sink geometries is presented. To that end, an experimental characterization facility is developed to evaluate existing traditional heat sinks. The heat transfer performance of the heat …


Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller May 2022

Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller

Mechanical Engineering Undergraduate Honors Theses

The development of high-performance air-cooled heat exchangers is required to permit the rapid growth of vehicle and aircraft electrification. In electric vehicles and airliners, the motors and power electronics are integrated into a compact space, leading to unprecedently high power density. To achieve higher overall thermal efficiency, the heat exchangers must be extremely light while maintaining their heat transfer performance and mechanical robustness. Recently advances in 3D metal printing, e.g., direct metal laser sintering, and selective laser melting, have enabled the manufacturing of high-performance robust heat exchangers by eliminating thermal boundary resistance and ensuring a uniform thermal expansion coefficient. Nonetheless, …


Nanoscratch Study Of Diamond-Like Carbon Coatings With A Polydopamine + Sio2 Adhesive Underlayer, Anna Fisher May 2021

Nanoscratch Study Of Diamond-Like Carbon Coatings With A Polydopamine + Sio2 Adhesive Underlayer, Anna Fisher

Mechanical Engineering Undergraduate Honors Theses

Diamond-like carbon (DLC) coatings have a wide array of desirable characteristics such as low friction, high hardness, and scratch resistance. Due to high residual stress and thermal mismatch, DLC films experience adhesion difficulties when bonded with metallic substrates, leading to cracking and delamination. In this study, the properties of a new coating with a polydopamine underlayer and silica nanoparticles bonded to a stainless-steel substrate (PDA+SiO2/DLC) were studied alongside three other samples, one with a polydopamine underlayer (PDA/DLC), one with a trimethylsilane (TMS) underlayer (TMS/DLC), and one with no underlayer (DLC only). Nanoscratch tests were performed with a 1 μm spheroconical …


Construction Of A Hyperspectral Imager Using 3d-Printed And Off-The-Shelf Components, Joshua Moorhouse May 2020

Construction Of A Hyperspectral Imager Using 3d-Printed And Off-The-Shelf Components, Joshua Moorhouse

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences is working in collaboration with the Mechanical Engineering department to create a relatively cheap and modifiable hyperspectral imager. It is constructed using 3D-printed and off-the-shelf components from Edmund Optics and Amazon. The iteration created in this paper delivers spectrograms in the visible spectrum. The long-term goals of the camera are to create hyperspectral images from these spectrograms and to advance the imager into the infrared and near-infrared spectra. This imager is being developed to be used in the Arkansas Center for Space and Planetary Sciences environmental test chambers to further the scientific …


Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez May 2019

Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez

Mechanical Engineering Undergraduate Honors Theses

In this thesis, research is conducted in the area of soft robotics by building a soft tadpole that can deform with a specific air pressure. The goal is to mimic the motion of an organic tadpole in respect to its S-shaped tail movement. The angle of deformation, derived from material mechanic theories, ranges from 45 to 80 degrees for this type of movement. The design includes a head compartment which acts as a tank to transfer nitrogen pressure and a tail section that receives the said pressure and bends as a result. The tail section was designed with two rows …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


Chip-Package Interfacial Stress Analysis And Reliability Implications For Flip-Chip Power Devices, Jonathan Gh Treco May 2017

Chip-Package Interfacial Stress Analysis And Reliability Implications For Flip-Chip Power Devices, Jonathan Gh Treco

Mechanical Engineering Undergraduate Honors Theses

The solder in flip-chip assemblies experience high stress and strain because of thermal mismatch induced deformation. These deformations occur because of the differences of coefficient of thermal expansion between flip-chip assembly materials. The similarly in stress profiles between thermal induced and shear induced stress in solder joints enable the use of die shear testing as a representative technique for relating the max stress the flip-chip can withstand to cyclic thermal fatigue failures. In this work, two electronic device sample preparation types are evaluated: One set of samples are soldered together and other set of samples use epoxy as an adhesive. …


System-Layout-Dependent Thermally Induced Solder Stress & Reliability Implications, Ange C. Iradukunda May 2017

System-Layout-Dependent Thermally Induced Solder Stress & Reliability Implications, Ange C. Iradukunda

Mechanical Engineering Undergraduate Honors Theses

Electronic flip chip assemblies consist of dissimilar component materials, which exhibit different CTE. Under thermal cyclic operating conditions, this CTE mismatch produces interfacial and interconnect stresses, which are highly dependent on system layout. In this paper, sensitivity analyses are performed using ANSYS FEA to establish how the proximity and arrangement of neighboring devices affect interconnect stress. Flip chip alignment modes ranging from edge-to-edge to corner-to-corner are studied. Results of these FEA studies, demonstrated that closely packing devices together has the effect of making them act as one. This results in a significant increase in the thermomechanical stresses induced on peripheral …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Mechanical Engineering Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …


Atomic Force Microscope Imaging Of Dna And Multi Walled Carbon Nanotubes, Jacob Hohnbaum May 2007

Atomic Force Microscope Imaging Of Dna And Multi Walled Carbon Nanotubes, Jacob Hohnbaum

Mechanical Engineering Undergraduate Honors Theses

The Micro and Nano System Laboratory at the University of Arkansas currently is equipped with an Atomic Force Microscope (AFM). This device can be used to measure objects with resolution on the nanometer scale, but there are a number of technical difficulties in performing scans of carbon nanotubes and DNA. The goal of this research is to successfully perform scans on both carbon nanotubes and DNA and to also establish laboratory processing protocols to re-perform such scans in the future. Previous works performed by other researchers in the laboratory provided basic protocols with which to begin the present research. These …